

Co-funded by the Horizon 2020

Framework Programme of the European Union

Practical Autonomous Cyberhealth for resilient SMEs &

Microenterprises

Grant Agreement No. 883335

Innovation Action (IA)

D4.2 Trust Attestation and Verification Framework

– First Release

Document Identification

Status Final Due Date 31/12/2021

Version 1.0 Submission Date 24/01/2022

Related WP WP4 Document Reference 1.0

Related

Deliverable(s)

D2.1 Dissemination Level

(*)

PU

Lead Participant HPELB Lead Author Supreshna Gurung and

Ludovic Jacquin (HPELB)

Contributors HPELB

POLITO

SFERA

Reviewers Davide Sanvito (NEC)

Diego R. Lopez (TID)

Keywords:

Trust, Attestation, Recovery, Fault management, Breach management, TPM, Finite State

Machine, Deterministic Finite Automata.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 2 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

This document is issued within the frame and for the purpose of the PALANTIR project. This project has received funding from the European
Union’s Horizon2020 Framework Programme under Grant Agreement No. 883335. The opinions expressed and arguments employed herein

do not necessarily reflect the official views of the European Commission.

This document and its content are the property of the PALANTIR Consortium. All rights relevant to this document are determined by the
applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents are

not to be used or treated in any manner inconsistent with the rights or interests of the PALANTIR Consortium or the Partners detriment and are

not to be disclosed externally without prior written consent from the PALANTIR Partners.
Each PALANTIR Partner may use this document in conformity with the PALANTIR Consortium Grant Agreement provisions.

 (*) Dissemination level: PU: Public, fully open, e.g., web; CO: Confidential, restricted under conditions set out in Model Grant Agreement;

CI: Classified, Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 3 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Supreshna Gurung, Ludovic Jacquin HPELB

Silvia Sisinni, Ignazio Pedone and Antonio Lioy POLITO

Izidor Mlakar, Valentino Šafran, Renato Pulko and Primož Jeran SFERA

Document History

Version Date Change editors Changes

0.6 15/12/2021 HPELB, POLITO, SFERA Final draft for internal review.

0.11 05/01/2022 HPELB, SFERA Revised draft for second internal review.

1.0 21/02/2022 HPELB Final version for submission

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader HPELB 21/01/2022

Quality manager INFILI 24/01/2022

Project Coordinator DBC 24/01/2022

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 4 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

Following the work presented in Deliverable 2.1, where the requirements of the PALANTIR solution

are elicited and the high-level design and architecture of the platform is presented, a detailed study of

the different components has been done in order to obtain the low-level architecture and design (up to

subcomponent granularity), the specifications (by means of the transformation of the user requirements

into technical requirements/specifications) and the implementation guide (describing the technologies

to use) for each component of the PALANTIR solution. This work has been divided into the three

technical development work packages of PALANTIR, namely Work Packages (WP) 3, 4 and 5. This

deliverable covers the Trust, Attestation and Recovery component developed in WP4. The target

audience for this document is the technical communities that are interested in understanding, developing

or deploying the Trust, Attestation and Recovery component of the project PALANTIR’s solution.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 5 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ...3

Executive Summary ...4

Table of Contents ...5

List of Tables ..6

List of Figures ..7

List of Acronyms ..8

1. Introduction ..9

2. Design and Architecture ...10

2.1. Attestation Engine ... 10

2.1.1. Subcomponents ... 10

2.1.2. General Workflow ... 11

2.1.3. Interactions between the Attestation Engine and the other components 13

2.1.4. Internal Operation .. 14

2.2. Fault & Breach Management .. 14

2.2.1. Subcomponents ... 14

2.2.2. General Workflow ... 17

3. Specification ...20

3.1. Attestation Engine ... 20

3.1.1. Attestation Engine requirements ... 20

3.2. Fault & Breach Management .. 21

4. Implementation ...24

4.1. Attestation Engine ... 24

4.1.1. Design and technologies of the POLITO AE .. 24

4.1.2. Design and technologies of the HPELB AE .. 30

4.2. Fault & Breach Management .. 30

4.2.1. PALANTIR interface to design FSMs .. 32

4.3. Recovery Service .. 33

5. Conclusions ..35

6. References ..36

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 6 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1: Requirements related to Attestation Engine ___ 21
Table 2: Requirements related to the FBM. __ 22
Table 3: Data Breach and Remediation steps. __ 23

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 7 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1: High level PALANTIR architecture .. 10
Figure 2: Initial Attestation Workflow .. 11
Figure 3: Periodic attestation Workflow .. 12
Figure 4: Remediation for failed attestation Workflow .. 12
Figure 5: Inter-components interaction of Attestation Engine ... 13
Figure 6: Conceptual workflow of the FBM. .. 15
Figure 7: Data Breach and Remediation workflow diagram. ... 16
Figure 8: PALANTIR FBM with 2 FSMs variants. ... 17
Figure 9: Two Workflow scenarios handling the data breaches... 18
Figure 10: Two Workflow scenarios for triggering the Recovery Policies. .. 19
Figure 11: POLITO AE in-depth architecture .. 24
Figure 12: Keylime architecture ... 26
Figure 13: New compute node registration workflow with Keylime Driver ... 27
Figure 14: New SC registration workflow with Keylime Driver ... 28
Figure 15: Workflow for the integrity check of a compute node with deployed SCs .. 29
Figure 16: First version of the FBM architecture. ... 31
Figure 17: Structure of the Spring Boot app which runs FSMs. ... 31
Figure 18: FBM Swagger UI used in the implementation. ... 32
Figure 19: Designing the FSM for December PALANTIR GA inside the Papyrus. .. 33
Figure 20: RS Component Structure proposition with FSM model. ... 34

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 8 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /

acronym
Description

AE Attestation Engine

AMD SEV AMD Secure Encrypted Virtualization

DFA Deterministic Finite Automata

DIME Distributed Intrusion Monitoring Engine

Dx.y Deliverable number y, belonging to WP number x

ETSI European Telecommunications Standards Institute

FBM Fault & Breach Management

FSM Finite State Machine

GDPR General Data Protection Regulation

IAK Initial Attestation Key

IDevID Initial Device IDentity

IMA Integrity Measurement Architecture

Intel SGX Intel Software Guard Extensions

IR Incident Response

JSON JavaScript Object Notation

MSPL Medium-level Security Policy Language

NFV Network functions virtualization

OCI Open Container Initiative

PCR Platform Configuration Register

RoT Root of Trust

RR Remediation and Recommendation

RS Recovery Service

SC Security Capability

SCHI Security Capabilities Hosting Infrastructure

SCO Security Capability Orchestrator

TAR Trust, Attestation and Recovery

TEE Trusted Execution Environment

TI Threat Intelligence

TPM Trusted Platform Module

UEFI Unified Extensible Firmware Interface

UML Unified Modeling Language

URL Uniform Resource Locator

VE Virtual Environment

VM Virtual Machine

WP Work Package

XML Extensible Markup Language

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 9 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

1. Introduction

This “D4.2 Trust Attestation and Verification Framework –First Release” deliverable presents the

architecture, specifications and implementation of the different entities that compose the Trust,

Attestation and Recovery (TAR) component of the PALANTIR architecture presented in D2.1; it relates

to tasks T4.2 and T4.4. This document provides the design and implementation guidelines for the work

in WP4 and in related aspects in other WPs, such as WP3 and WP5.

This deliverable is the first iteration of the Trust, Attestation and Recovery component specifications.

The next version of this deliverable is due at month 31 of the PALANTIR project, where the final design

and implementations is provided, together with other technical details on implementation and integration

with other components of the PALANTIR platform.

This deliverable starts with the design and architecture of each sub-component of the TAR, followed by

their technical specification and the implementation guidelines.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 10 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

2. Design and Architecture

Figure 1 represents the high-level architecture introduced in Deliverable 2.1 (D2.1) of the project. This

section details the internal architecture of the TAR component, specifically the Attestation Engine (AE),

the Fault and Breach Management (FBM) and the Recovery Service (RS).

Figure 1: High level PALANTIR architecture

2.1. Attestation Engine

The Attestation Engine component inside the Trust, Attestation and Recovery framework implements

the remote attestation solution of Project PALANTIR. The Attestation Engine reaches this goal by

remotely establishing trustworthiness of a platform or service by exploiting Trusted Computing

technologies such as Trusted Platform Module (TPM) [1] chips as the Root of Trust (RoT) and Measured

Boot feature of Unified Extensible Firmware Interface (UEFI) along with leveraging memory inspection

capability to perform runtime [2] verification of the platform.

The Attestation Engine integrates with the Security Capabilities Hosting Infrastructure (SCHI) to

perform remote attestation procedure and forwards attestation results to the Recovery Service, another

component of TAR that assists with resilience management and incident response of the Security

Capabilities (SC). The attestation results are also forwarded to Threat Intelligence (TI) for threat

classification using technologies like machine learning and deep learning as well as the PALANTIR

Portal for visualisation.

2.1.1. Subcomponents

The Attestation Engine is a distributed system that has subcomponents distributed throughout the

PALANTIR infrastructure in order to maintain trustworthiness of the system.

• Attestation Agent: Each monitored node of SCHI hosts an Attestation Agent that is responsible

for forwarding attestation information and alerts used by the AE. For example, it extracts the

measurement stored in the TPM, signed with a TPM specific key, and sends them to the AE.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 11 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

• Reference Measurement plugin: The AE needs a baseline set of measurement, known to be

correct, to compare the SCHI measurement against. For SC, those baseline sets are generated

by a Reference Measurement plugin that generates the known-good measurement for the new

SC images onboarded in PALANTIR; this plugin is deployed in the Security Capability

Orchestrator (SCO).

2.1.2. General Workflow

The Attestation Engine is responsible for establishing trustworthiness of the infrastructure and security

services. This is obtained by applying trusted computing attestation to the platforms and Security

Capabilities starting at the initial deployment through operation. The following figures describe the

workflow of each phase of the attestation procedures performed by the Attestation Engine.

Figure 2: Initial Attestation Workflow

The initial attestation occurs each time a new instance of a given Security Capability is deployed. Figure

2 depicts the workflow for initial attestation of every new instance. The Security Capabilities

Orchestration, which is in charge of the overall management of the security capabilities, notifies the

Attestation Engine when a new instance of the Security Capability is deployed or when a new platform

is introduced in the SCHI. The Attestation Engine performs remote attestation procedures on the SC to

validate its state. The SCHI also assists with the integrity reports from the AE agent hosted in SCHI for

verification. If the verification fails, the AE sends a failure response to the Recovery Service (RS)

suggesting the SCO not to use that SC and to exclude it from the infrastructure.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 12 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Figure 3: Periodic attestation Workflow

In order to maintain the trustworthiness of the infrastructure and services, the Attestation Engine

performs periodic runtime attestations after the initial attestation as interpreted in Figure 3. The SCHI

periodically notifies infrastructure topology updates to the Attestation Engine to keep the AE aware of

the latest topology of the infrastructure. The infrastructure topology is iterated periodically per node and

SC. If the verification fails at any time, the Attestation Engine sends a failed attestation notification to

the RS. The failed attestation notification is also forwarded to Threat Intelligence for further analysis.

Figure 4: Remediation for failed attestation Workflow

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 13 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

In case of failed attestation, the Attestation Engine sends a failed attestation notification to the Recovery

Service. The RS is responsible for applying remediation processes in case of failed attestation; therefore,

it finds a suitable recovery policy based on the type of attestation failure. The RS then interacts with the

Remediation and Recommendation (RR) component within TI to refine the recovery policy into a

MSPL. The Recovery Service forwards that MSPL to the SCO and performs the remediation process

accordingly as mentioned in Figure 4.

2.1.3. Interactions between the Attestation Engine and the other components

Based on the workflows defined previously, the interaction between the AE and the other components

of PALANTIR is represented in Figure 5. The interaction with each component is described below.

Figure 5: Inter-components interaction of Attestation Engine

Security Capability Orchestrator – Attestation Engine interactions

The SCO interacts with the Attestation Engine to notify deployment of a new node and Security

Capability. The SCO also hosts an Attestation Engine plugin that interacts with the AE through a Kafka

topic to update Reference Measurement to AE.

Security Capability Hosting Infrastructure – Attestation Engine

interactions

The other communication is from SCHI to Attestation engine in order to retrieve attestation proof from

TPM measurements, which is fetched from REST API defined in the Attestation Engine. The integrity

report and runtime alerts are sent from the SCHI to the Attestation Engine through an agent in SCHI.

This is done by the Redfish API defined in the Attestation Engine agent (DIME) in SCHI.

Recovery Service – Attestation Engine interactions

After the node verification, the attestation result is forwarded to the Recovery Service. The Recovery

Service suggests the SCO to exclude the node/SC in case of failed attestation and to trust the node/SC

in case of successful attestation. This is done by a Kafka topic defined by the Attestation Engine

Threat Intelligence – Attestation Engine interactions

The periodic attestation results and runtime alerts are sent to the Threat Intelligence by the Attestation

Engine through a Kafka topic defined by the Threat Intelligence for further analysis.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 14 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Portal – Attestation Engine interactions

The security events related to the attestation results are also sent to the Portal through Kafka topic

defined by the Portal.

2.1.4. Internal Operation

The Attestation Engine keeps an updated list of known-good reference measurements about platform

nodes, software packages and valid configurations to assess the trust of the infrastructure and Security

Capabilities. It interacts with the SCO to retrieve the information needed, per node, for performing

attestation of SCs. The Attestation Engine maintains an updated view of infrastructure topology from

the SCO. This information is used by the Attestation Engine to detect any compromised node by periodic

attestation.

The Attestation Engine also performs runtime verification by continually monitoring the SCHI memory,

logging violations such as kernel memory modification, and sending alerts to the AE.

2.2. Fault & Breach Management

The Fault & Breach Management (FBM) component aims to enable the design and deployment of

procedures and strategies with regard to fault and breach management and remediation by unifying,

correlating and automating event handling across the end-to-end physical and virtual infrastructure.

The FBM utilizes inputs from the RR and the AE in a management and orchestration ‘platform’ for

semi-automated design and deployment of notification, management and remediation policies. These

policies are personalized by network/service operators and are modelled to their specific requirements

like specific mechanisms to be triggered after a security issue is detected.

The goal of this component is to personalize the triage, reduce triage and mean-time-to-repair as well as

to minimize exposure, while improving communication and collaboration. To this end, the FBM

interacts with the TI, the SCO and the Portal Dashboard using Kafka protocol and topics.

2.2.1. Subcomponents

The FBM (Figure 6) is a fully virtualized system that consists of the Incidence Response (IR) and

Recovery Service (RS) subcomponents. Both subcomponents are designed to carry out personalized

intervention defined as a Finite State Machine (FSM).

In more detail, the purpose of the FBM component is as follows:

• A Finite State Machine (FSM) is a computing model that may be used to mimic sequential logic

or to describe and regulate an execution flow. A state machine is a behaviour model with a finite

number of states. Based on the current state and a provided input, the machine performs state

transitions and creates outputs. A state is a description of a system's current state as it awaits the

execution of a transition.

• IR engine: a PALANTIR-protected infrastructure hosts one IR instance that is responsible for

triggering mitigation policies when a threat/attack related to data breach is detected by the TI.

• RS Engine: a PALANTIR-protected infrastructure hosts one RS instance that is responsible for

triggering recovery policies when attestation faults are detected. In addition to automation and

mitigation services offered by the SCO, the FSMs also include alerts/messages and interventions

that require human intervention. In such cases, notifications or requests can be sent to the

Dashboard based on the FSM result. The notification or request can then be handled by the

PALANTIR operator.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 15 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Figure 6: Conceptual workflow of the FBM.

Figure 6 represents the components and conceptual workflow of the PALANTIR FBM component. The

objective of the IR is to handle remediation policies for threat mitigation, especially those that cannot

be handled (for instance) by the cross-system or stakeholder notifications which may be specific for an

individual entity (ME/SME). Figure 7 outlines a conceptual, functional diagram representing such a

complex policy. This diagram is used as a baseline (generic) workflow when considering the FSM

implementation options to be supported and the design of remediation actions personalized to the

requirements of the ME/SME. As an example, a server is infected with malware and this is detected by

TI. The goal would be to isolate infected server and create local copies to start a “chain of custody”. In

PALANTIR there is an FBM policy created to isolate and, if needed, to shut-down the infected server.

The execution of this policy within the IR subcomponent can be triggered automatically via the TI.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 16 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Figure 7: Data Breach and Remediation workflow diagram.

The goal of the RS component is to periodically check the status of the PALANTIR platform and to

respond to possible faults or malfunctions. Similarly to the IR, a RS policy is defined with SME/ME

specific recovery goals. Below is an initial set of possible recovery services functionalities:

• Verify whether services are running.

• Compare what is supposed to run against what is actually running.

• Check whether services are responding.

• Check whether services are working correctly.

Figure 8 illustrates the design of PALANTIR’s FBM component to support the IR and the RS

components. The FBM supports two different implementations of FSMs.

• FSM1 can be triggered through Kafka or REST interactions, or be pre-started. The FSM1

implements a REST API to communicate with the REST endpoint/s while FSM1 is executed. It

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 17 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

is best suited for ‘’simple’’ scenarios, i.e. messaging and alerts, or where services triggered

require manual intervention (i.e. password changes, user policy management changes, etc.).

• FSM2 is better suited for complex operations, for example where interactions with the

PALANTIR components (e.g. the SCO) are foreseen. To this end, FSM2 implements an internal

Kafka Producer which can interact with multiple PALANTIR components.

Figure 8: PALANTIR FBM with 2 FSMs variants.

2.2.2. General Workflow

The general workflow of the IR component is presented in Figure 9, where two different scenarios and

two differently modelled FSMs are triggered by the TI.

• In the first scenario S1, a data breach detected by TI is triggering the FSM1, which alerts the

user in the PALANTIR Portal about the detected data breach. Shortly after, the IR starts running

the service defined for the detected incident (e.g. Data Backup) and notifies the user again about

the action performed.

• In the second scenario S2, a data breach detected by TI is triggering the FSM2, which asks for

user intervention through service reconfiguration and awaits user response. Once the

confirmation is received from the user about the reconfiguration, the IR component refines the

response policy with the RR in the TI. Then the IR deploys the recommended service, gets the

information back from the SCO and finally can send the notification to the Portal.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 18 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Figure 9: Two Workflow scenarios handling the data breaches.

The workflow of the RS component is shown in Figure 10. Again, two possible scenarios with different

FSMs are presented here.

• In scenario S1, the AE notifies the RS about a failed attestation that triggers FSM1, which

requests the compatible capabilities to the SCO, then decides the recovery policy to be applied

and sends a notification to the user via the Portal.

• Scenario S2 triggers FSM2 upon notification from the AE and, based on the payload of the

message, asks for user intervention regarding the configuration. It waits for confirmation from

the user and retrieves the configuration of the compatible capabilities from the SCO. The

recovery policy is then refined and sent to the RR in the TI. The updated policy is forwarded to

the SCO, and a notification can be displayed on the Portal.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 19 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Figure 10: Two Workflow scenarios for triggering the Recovery Policies.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 20 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

3. Specifications

This section details how the PALANTIR requirements, provided in D2.1, are addressed by each

component of the Trust and Attestation Framework.

3.1. Attestation Engine

Before going into the implementation section, the AE requirements from D2.1 are reminded to the reader

in Table 2, which also explains the choices to fulfil the requirements related to the AE.

3.1.1. Attestation Engine requirements

D2.1 specifies the generic requirements for most PALANTIR components and then specific

requirements for each component. This section describes how the AE meets those requirements.

Req. ID Requirement description

R1.1.4 The platform SHOULD implement communication between PALANTIR components

with a lightweight message queue

The AE relies on the Apache Kafka [3] software bus, which is the preferred choice within the

PALANTIR project. For compatibility with existing open-source project, the AE uses the Redfish and

Keylime APIs between the AE and the SCHI nodes.

R1.2.5 The PALANTIR-introduced security mechanisms should be transparent to the operation

of vertical applications.

The technologies, methods and protocols used by the AE do not impact the operation of the

PALANTIR’s end user applications.

R1.2.8 Technologies used by PALANTIR SHOULD be trustable.

The AE leverages Reference Measurements that enable the stakeholders to ensure that the running

software is the one they wanted.

R1.2.9 The PALANTIR system MUST provide security mechanisms to ensure that user (and

endpoints) data are securely processed and stored wherever it is processed or stored.

 By implementing attestation and runtime monitoring, the AE provides PALANTIR with a way to

ensure that the appropriate hardware, firmware, software and configuration are used to process data.

R1.3.30 The platform SHOULD provide network isolation for compromised systems.

By implementing attestation and runtime monitoring, the AE provides PALANTIR with a way to detect

compromised systems and then isolate them through the appropriate recovery policy in the RS.

R1.4.1 PALANTIR SHOULD deploy mechanisms for the periodic attestation of the platform and

the running applications', services' and configurations' integrity.

The AE deploys both initial and periodic attestation of the hardware, firmware and software running

on the SCHI.

R1.4.2 PALANTIR SHOULD recover from threats on the Security Capability Hosting

Infrastructure.

Upon failure of an attestation, or reception of a security alert, from the SCHI, the AE notifies the RS,

which in turn applies the appropriate recovery policy.

R1.4.3 The platform SHOULD be able to identify and isolate network segments, data or

equipment at risk and enable automatic redundancy and (offline) data backup service to

prevent corruption or loss of data. The risks are recognised complex reflected primarily in

unexpected/unusual behaviour.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 21 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Req. ID Requirement description

By implementing attestation and runtime monitoring, the AE provides PALANTIR with a way to detect

compromised systems and then isolate them through the appropriate recovery policy in the RS.

R1.4.4 The platform SHOULD be able to collect and analyse the status and health of the

underlying infrastructure, including components at risk due to improper communication

security (i.e., no or weak encryption), weak passwords, or irregular updates.

By implementing attestation and runtime monitoring, the AE provides PALANTIR with a way to detect

incorrect configuration or missing updates in the SCHI.

Table 1: Requirements related to Attestation Engine

3.2. Fault & Breach Management

D2.1 specifies the generic requirements for most PALANTIR components and then specific

requirements for each component. This section describes how the FBM meets those requirements in

Table 2.

Req. ID Requirement description

R1.1.4 The platform SHOULD implement communication between PALANTIR components

with a lightweight message queue

The FBM supports the Apache Kafka [3] software bus, which is the preferred choice within the

PALANTIR project. For compatibility with existing open-source projects, the FBM relies on a

SpringBoot implementation.

R1.2.5 The PALANTIR-introduced security mechanisms should be transparent to the

operation of vertical applications.

The FSMs represent a convenient and user-friendly way of specifying security functionalities and

system responses in a user-understandable way. This means that end-users can easily foresee and

model the impact of the PALANTIR security mechanism on day-to-day operations. However, the

FBM has no impact on the operation of the PALANTIR’s end user applications.

R1.3.3 The platform SHALL provide a variety of SecaaS packages on the Catalogue.

The PALANTIR FSM enables a unique way of integrating automated and supervised actions into

holistic management and remediation policies, personalized to the ME/SME requirements. The

FBM implements the link between the services (including isolation) and the users. Within the

PALANTIR Project, generic FSMs are offered, which can be further modelled by PALANTIR

Operators.

R1.3.9
The platform SHOULD be able to monitor the deployed security capabilities and

expose such data through programming interfaces for other internal components.

The RS component enables the implementation of periodic checks of the status of PALANTIR

architecture. The FBM implements the link between the services (including isolation) and the

PORTAL and can report on the status. Using FSMs and a Kafka Software bus, the PALANTIR

operators can also design more complex, automatic or hybrid (with manual interventions),

workflows

R1.3.12 The platform SHALL deploy in cloud/hosted and edge SecaaS delivery modes.

The FBM is deployed as a cloud service that supports REST API and Apache Kafka software buses

to interact with the rest of the PALANTIR services. Thus it can be deployed virtually anywhere;

however, close to edge deployments are preferred. The FBM components can be deployed on a

VM or as a Docker solution.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 22 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Req. ID Requirement description

R1.3.13
The platform SHOULD deploy in lightweight SecaaS delivery mode with minimal

computational resources.

The Spring Boot Framework used to implement FBM has a low memory footprint. It is coupled

with Maven—a project-management tool that is based on a POM (project object model)

representation. The selected technologies enable full customisation of the end-user applications

and required libraries through a single XML file. With Spring Boot Thin Launcher we can also

create ‘thin’ Jar deployments especially relevant for microservice development.

R1.3.14 The platform SHALL be able to retrieve the basic status for the security capabilities

instantiated or available (in the Catalogue).

The RS component enables the implementation of periodic checks of the status of PALANTIR

architecture and respond to possible faults or malfunctions.

R1.3.30 The platform SHOULD provide network isolation for compromised systems.

By implementing attestation and runtime monitoring, the AE provides PALANTIR with a way to

detect compromised systems and then isolate them through the appropriate recovery policy in the

RS.

R1.4.1 PALANTIR SHOULD deploy mechanisms for the periodic attestation of the platform

and the running applications', services' and configurations' integrity.

RS enables the definition of personalized policies that is executed as FSMs to provide the needed

attestation, configuration and remediation.

R1.4.2 PALANTIR SHOULD recover from threats on the Security Capability Hosting

Infrastructure.

IR component is designed to complete this requirement by implementing FSMs with steps for

recovering from threats. Upon threat detection a specific policy is triggered within

R1.4.3

The platform SHOULD be able to identify and isolate network segments, data or

equipment at risk and enable automatic redundancy and (offline) data backup service

to prevent corruption or loss of data. The risks are recognised complex reflected

primarily in unexpected/unusual behaviour.

Similar to R1.3.30, another pre-modelled FSM or even multiple FSMs are executed upon receiving

TI threat findings (JSON message) to satisfy this requirement.

R1.4.4

The platform SHOULD be able to collect and analyse the status and health of the

underlying infrastructure, including components at risk due to improper

communication security (i.e. no or weak encryption), weak passwords, or irregular

updates.

By implementing the Kafka broker and clients, the platform is able to collect the infrastructure

information.

Table 2: Requirements related to the FBM.

Table 3 outlines the Remediation Actions for Data Breaches associated with the D2.1 requirements that

are used to create the FSMs. This way we can form the FSMs to help in mitigation of specific threats.

Remediation Action description Req. ID

Isolate the affected system to prevent further damage R1.3.30

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 23 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Remediation Action description Req. ID

Disconnect from the Internet by pulling the network cable from the firewall/router to stop

the bleeding of data

R1.3.30

Keep a record of everything that happened with next information:

How did you find out about the alleged breach

When and how you were notified, as well as when and how you were notified

What the notification said to you

All actions conducted between the time of notification and the incident's conclusion

The date and time when systems were disconnected from the Internet

When you disable remote access (and when you don't)

When and if you updated your account passwords/credentials

All other system hardening or remediation steps taken

R1.4.3,

R1.4.4

Remote access and wireless access points should be disabled (not deleted) R1.4.3

All account passwords should be changed, and non-critical accounts should be disabled

(not deleted)

R1.4.4

Old passwords should be written down and analysed afterwards R1.3.3

Change access control credentials (usernames and passwords) and implement highly

complex passwords, or even better, use passphrases

R1.4.3

Segregate all hardware devices from other critical devices. Relocate these devices to a

separate network subnet and keep them powered on to preserve volatile data

R1.4.3

Quarantine instead of deleting or removing identified malware found by your antivirus

scanner for later analysis and evidence

R1.3.30

Preserve firewall settings, firewall logs, system logs, and security logs. Take screenshots

if necessary

R1.4.3

Restrict Internet traffic to only critical servers and ports outside the database. If you must

reconnect to the Internet before an investigator arrives, remove your database from any

devices that must have Internet connectivity until you consult with your forensic

investigator

R1.4.3

Determine whether to notify law enforcement R1.3.3,

R1.3.9

Contact an outside body experienced in managing data breaches

to immediately investigate and ensure you’ve properly contained the breach

R1.3.3,

R1.3.9

Table 3: Data Breach and Remediation steps.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 24 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

4. Implementation

This section explains the implementation details of the different subcomponents within the Trust,

Attestation and Recovery component. Information including specific technologies and techniques and

their benefits is provided.

4.1. Attestation Engine

The Attestation Engine for PALANTIR is implemented in two different flavours, one by HPELB and

another by POLITO. Both implementations are interoperable as they comply with the architecture

presented above in Section 2.1.

4.1.1. Design and technologies of the POLITO AE

The POLITO AE is a monitoring entity of an NFV platform intending to provide periodic remote

attestation of both the NFV Infrastructure and SCs running inside containers, ensuring that the deployed

SCs are trustworthy. The AE has been developed with a modular architecture, whose subcomponents

are represented in Figure 11.

Figure 11: POLITO AE in-depth architecture

These subcomponents are described below:

• The AE core application receives from the SCO requests for registering new compute nodes

and SCs, to be deployed in the SCHI through the Attestation & Management Connectors.

Moreover, it provides the integrity verification functionality by means of Attestation Drivers,

developed as plugins, that allow instantiating different remote attestation workflows, depending

on the type of host, each one with a specific verification logic. This makes the AE able to attest

nodes with different architectures (e.g., x86, ARM) and with RoTs based on different

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 25 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

technologies (e.g., hardware TPM, ARM TrustZone [15], Intel SGX [16] or AMD SEV [17],

but also virtualised Trusted Execution Environments (TEE), although these offer lesser

assurance than hardware-based ones), avoiding the lock-in with a particular vendor.
• The POLITO AE supports the Notification and Reporting functionality of integrity status

information to external entities by means of pluggable connectors that allow the interaction of

the AE with the other PALANTIR components, in particular the RS, the TI and the Portal.
• The POLITO AE relies on the Whitelist Service component for the creation of the whitelists for

both the host systems and the containers, by relying on the information retrieved from the SCO

and the SCC.

The operational workflow of the POLITO AE is compliant with the one described in section 2.1.2.

The POLITO AE has been implemented as a set of microservices, where the AE core application holds

a central role. Each of these components is developed using the Python language, with a Docker [18]
file that allows its deployment through the Docker container engine; in addition, the Docker Compose

[19] tool has been used to quickly and efficiently instantiate all the AE sub-components and easily enable

network interaction between them. The AE core application leverages Django REST web framework

[20] and exposes APIs to register the computational nodes and SCs deployed in the SCHI. Other APIs

are exposed to attest SCs and to verify the correct configuration of all the AE’s subcomponents. The

Whitelists Service is in charge of centralizing the creation and management of the whitelists for physical

hosts and containers. This component communicates with the other POLITO AE sub-components

through REST APIs. The Attestation & Management and Notification & Reporting Connectors have

not yet been implemented. The idea is to develop them as Kafka consumers and producers, providing

connectivity between the POLITO AE and the other PALANTIR components (e.g., SCO, RS, TI, and

the Portal).

The integrity verification functionality provided by the POLITO AE relies on the Keylime framework

[5], which supports periodic remote attestation of compute nodes based on TPM 2.0 as hardware RoT.

The POLITO AE does not use the basic version of the Keylime framework but an extended version.

This version supports a custom attestation solution, developed by POLITO, which allows attesting

separately the host system and each SC running on it. This solution defines a new Linux Integrity

Measurement Architecture (IMA) template, which associates an entry of the IMA Measurement Log

(ML) with the host system or a specific container by relying on properties owned by the containerized

processes, valid for most of the Open Container Initiative (OCI) Container Runtimes currently in use.

The remote attestation of OCI-containers based on this solution relies on a hardware RoT since it

leverages IMA and TPM 2.0 technologies. Moreover, unlike the basic version of Keylime, this extended

version can perform the integrity verification of the IMA ML by relying on any Platform Configuration

Register (PCR) bank present in the TPM 2.0, not just the SHA-1 bank. Further details on the Keylime

framework and the attestation driver developed to integrate it within the POLITO AE are in turn in the

following sections.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 26 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Keylime Architecture

In this section we briefly introduce the Keylime overall architecture and its main components.

Figure 12: Keylime architecture

The Keylime architecture is based on the interaction of the four main modules depicted in Figure 12:

• the Keylime Tenant is the module that kicks off the framework; it registers the Keylime Agent

with the Keylime Verifier, sending it all the information (whitelist, exclude list and TPM policy)

necessary to start the periodic remote attestation on the node, and verifies the authenticity of the

TPM of the remote platform, by checking the validity of the certificate of the TPM’s

Endorsement Key (EKcert);
• the Keylime Agent is a service running on the remote compute node to be attested and is in

charge of sending the Integrity Reports (IRs), constituted by a TPM 2.0 quote and the IMA ML,

to the Keylime Verifier;
• the Keylime Registrar receives the TPM credentials from the Agent and sends them to the

Verifier and Tenant to allow them to verify the TPM quotes and the EKcert, respectively;

• the Keylime Verifier is responsible for evaluating the integrity level of the remote platform,

verifying the Integrity Reports based on the whitelist received from the Tenant and of the AIKpub

key received from the Keylime Registrar.

Keylime Attestation Driver
An Attestation Driver is a specific implementation of a generic integrity verification interface, which

exports six methods:

• registerNode() for registering a new compute node in a given attestation framework;
• registerSC() for registering a new SC deployed on a compute node;
• pollHost() for checking the integrity state of a compute node and all the SCs running on it

through the attestation framework;
• getStatus() for getting the status of the attestation framework, that is, if it has been properly

configured and is active;
• deleteNode() for removing a compute node previously registered in the attestation framework;
• deleteSC() for removing a SC associated to a compute node.

The POLITO AE supports an Attestation Driver for the Keylime framework; the workflows for the

registration of compute nodes or SCs and the integrity check of them are described below.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 27 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Figure 13: New compute node registration workflow with Keylime Driver

Figure 13 depicts the interactions triggered when the SCO adds a new compute node in the SCHI:

1. the SCO posts, in a specific Kafka topic, a message which is pulled by an Attestation &

Management connector;

2. the connector notifies the AE core application about the presence of a new computational node

to be periodically attested;

3. the AE core application invokes the registerNode() method exposed by the Keylime Driver;

4. the Keylime Driver requests the Whitelist Service to create the whitelist corresponding to the

new compute node;

5. the Keylime Driver registers the new compute node with the Keylime framework by sending a

REST request to the Tenant Webapp; the request body specifies the URL through which the

node’s whitelist can be downloaded, the exclude list and the TPM policy;

6. the Keylime Tenant Webapp downloads the whitelist specific for the compute node from the

Whitelist Service.

Steps 7, 8, 9, 10 and 11 concern the “Three Party Bootstrap Key Derivation Protocol”, described in

the Keylime whitepaper [21], at the end of which the Keylime Verifier begins the periodic remote

attestation on the compute node:

12. the Keylime Tenant Webapp retrieves the integrity status of the new compute node from the

Verifier;

13. the Keylime Tenant Webapp sends the registration response to the Keylime Driver, specifying

the integrity status of the new compute node;

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 28 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

14. the AE core application creates a JSON object describing the integrity status of the new compute

node and sends it to a Notification & Reporting connector;

15. the connector posts the received message to a specific Kafka topic, from which the RS can

retrieve the information of the first attestation of the computational node.

Figure 14: New SC registration workflow with Keylime Driver

Figure 14 depicts the workflow that takes place when the SCO deploys a new SC on a compute node

previously registered:

1. the SCO posts a message in a specific Kafka topic in order to notify this event; the message is

then pulled from an Attestation & Management connector;

2. the connector notifies the AE core application about the presence of a new SC deployed on a

given computational node;

3. the AE core application invokes the registerSC() method exposed by the Keylime Driver;

4. the Keylime Driver requests the Whitelist Service to create the whitelist for the new SC;

5. the Keylime Driver registers the new SC with the Keylime framework; the request body

specifies the compute node on which the SC is deployed, the URL through which the SC’s

whitelist can be downloaded and the exclude list;

6. the Keylime Tenant Webapp downloads the SC’s whitelist from the Whitelist Service;

7. the Keylime Tenant Webapp registers the new SC in the Keylime Verifier, associating it with a

previously registered Keylime Agent;

8. during the periodic remote attestation on the compute node, the Keylime Verifier attests the new

SC on the basis of the whitelist and exclude list received from the Tenant Webapp;

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 29 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

9. the Keylime Verifier sends to the Tenant Webapp the integrity status of the new SC;

10. the Keylime Tenant Webapp sends the registration response to the Keylime Driver, specifying

the SC’s integrity status;

11. the AE core application creates a JSON object describing the SC’s integrity status and sends it

to a Notification & Reporting connector;

12. the connector posts the received message to a specific Kafka topic, from which the RS can

retrieve the SC’s first attestation information.

Figure 15: Workflow for the integrity check of a compute node with deployed SCs

Figure 15 depicts the workflow for checking the integrity status of all the SCHI’s compute nodes and of

the SC’s running on them:

1. the AE core application periodically invokes the pollHost() method exposed by the Keylime

Driver for each compute node previously registered;

2. the Keylime Driver asks the Tenant Webapp for the integrity status of a given node;

3. the Keylime Tenant Webapp retrieves the current integrity status of the compute node and the

SCs running on it from the Keylime Verifier;

4. the Keylime Tenant Webapp sends the response to the Keylime Driver;

5. the AE core application creates a JSON object describing the current integrity status of the node

and the SCs and sends it to a Notification & Reporting connector;

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 30 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

6. the connector posts the received message to a specific Kafka topic, from which Portal and TI

can retrieve the integrity status information; if the message describes an integrity failure, the

connector also posts it to a Kafka topic from which the RS retrieves information.

4.1.2. Design and technologies of the HPELB AE

The Attestation Engine from HPELB is based on an internal project called Project Aurora [4], which

enables zero-trust security architectures from edge-to-cloud to transform security from a barrier to an

innovation accelerator. The Project Aurora software is extended to support the additional PALANTIR

requirements that are not currently addressed.

HPELB AE extensions

Beyond what is supported in Keylime, the HPELB AE implements the following capabilities.

HPELB DIME

The HPELB AE benefits from DIME [2], which is a HPELB solution for memory inspection to provide

continuous runtime verification of critical memory regions such as the kernel space. DIME is

implemented as a firmware agent, coupled with a kernel module, in the SCHI that sends runtime alerts

to the AE. The HPE server deployed in the PALANTIR testbed embeds the DIME firmware agent,

which is available to the PALANTIR consortium, particularly POLITO and its AE.

Hardware attestation

The HPELB AE leverages the TCG Platform Certificate Profile standard [6] to bootstrap its hardware

attestation feature. After the initial attestation of the component of a server, the HPELB AE can track

hardware changes throughout the lifecycle of the server to ensure that no unauthorised change happens.

TCG IDevID and IAK

The HPELB AE leverages the TPM 2.0 Keys for Device Identity and Attestation standard [7] when

creating the cryptographic keys and certificates used to perform attestation (Initial Attestation Key –

IAK) or authentication (Initial Device IDentity – IDevID). The TCG DevID specification implements

the IEEE 802.1AR Secure Device Identity standard [8].

Appraisal policies

The HPELB AE implements an appraisal – or verification – policy engine that allows users to tailor the

verification to their need. For example, the HPELB AE can track hardware changes, verify that UEFI

Secure Boot is in place, monitor if firmware or software updates matches the reference measurement

(i.e., is it an authorised update).

4.2. Fault & Breach Management

The initial FBM infrastructure is hosted on the Proxmox Virtual Environment (VE) [9], where each

component is deployed as a Virtual Machine (VM). As depicted Figure 16, there are 3 VMs

(components) building the architecture of the FBM.

Figure 16 outlines the experimental and development infrastructure established for the PALANTIR

project. After the technologies are developed, the component is pushed to the common PALANTIR

testbed. The Spring Boot application include and runs the Apache Camel 3.9.0 [10], Swagger (webjars)

3.51.2 [11] and Spring Statemachine 2.0.0 [12] dependencies. Apache Camel provides easy routing

between synchronous (HTTP - REST) and asynchronous (Kafka) protocols. It also allows integration

with other Java libraries. Swagger dependency prepared for Camel REST Domain Specific Language

(DSL) provides simple setup and configuring of the REST endpoints for REST API. Once the Swagger

is built and configured, it provides a Swagger UI interactive documentation accessible over the

embedded Tomcat HTTP web server. Spring Statemachine is a framework for application developers to

use state machine concepts with the Spring Boot application. Spring Statemachine framework runs the

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 31 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

predefined Finite State Machine (FSM) from the UML – XML file. FSMs are defined graphically inside

the Eclipse Papyrus [13] modelling environment.

Figure 16: First version of the FBM architecture.

VM S-001 is hosting the Spring Boot application that runs defined FSMs based on KAFKA topics

message or REST HTTP request message. This is outlined in Figure 17. Each FSM is built separately

as a Java JAR file. Then it can be triggered from the aforementioned Spring Boot application on an

appropriate JSON-based request. Each FSM goes through its states and end once every state is

completed.

Figure 17: Structure of the Spring Boot app which runs FSMs.

VM S-002 is running Kafka Broker with its Zookeeper listening for incoming messages and serving

outgoing messages on specific topics. Apache Kafka is a community distributed event streaming

platform capable of handling large number of events a day.

VM S-003 hosts dummy Kafka and REST clients. The same version of Kafka is installed on that VM

providing the ability to open Kafka Producer and Kafka Consumer as services for communication with

the Kafka Broker for testing purposes. The VM also provide the Postman [14] platform. Postman is an

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 32 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

API platform that allows to create and use APIs. Postman streamlines collaboration and simplifies each

phase of the API lifecycle, allowing to design better APIs quicker. We combine the use of Postman and

Swagger UI when building and testing REST endpoints.

The Swagger Specification is a REST API description format. API specifications are available in YAML

and JSON formats. Figure 18 outlines the FBM Swagger UI for PALANTIR project.

Figure 18: FBM Swagger UI used in the implementation.

4.2.1. PALANTIR interface to design FSMs

The environment used for modelling and the creation of the FSMs is Eclipse Papyrus. Eclipse Papyrus

provides a simple “drag & drop” workflow which exports the final FSM model to the UML (XML)

document containing the FSM configuration. This document is then used to build the Spring State

Machine inside the Spring Boot Java application.

Eclipse Papyrus, shown in Figure 19, is a UML tool with many features enabling complex

customisations. The Papyrus workspace contains different nodes which are used to build the UML state

machine. Each model should start with an “initial state” and end with a “final state”. What is in the

middle of those two states is up to the modeller of the state machine. Each transition between the nodes

can be connected to (call) program code written in different programming languages. This option is used

in the FSMs prepared for PALANTIR for communication with Kafka and REST.

Eclipse Papyrus' modelling elements are all meant to be customized and reused as much as possible. As

a result, if we wish to customize the modelling environment to meet our needs, we may alter the basic

setup for a certain domain, notation, or modelling practice using Eclipse Papyrus' strong modification

features. Because many configurations in Eclipse Papyrus are model-based, live modification is

possible. These are some of the possibilities that Eclipse Papyrus offer:

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 33 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

• Create own notation, whether graphical, textual, or tabular.
• Filter current palettes or create own with a model-based setup.
• Create dedicated property views to display only the features that are essential.
• Read models with specialized model explorer structure and rendering.
• Reuse common languages or create own modelling languages using the UML profile editor.

Figure 19: Designing the FSM for December PALANTIR GA inside the Papyrus.

4.3. Recovery Service

As was defined in D2.1, the Recovery Service assures the SCHI's resiliency by organizing the recovery

activities needed when a platform or capability is deemed untrustworthy or when a defect or breach is

discovered. The recovery options are many and varied in nature: a platform may be rebooted or isolated

by rerouting network traffic around it, a Security Capability can be re-configured or implemented with

a new solution, and so on. Such a wide range of recovery activities necessitates a flexible method of

picking the best recovery approach for each case, such as changeable playbooks.

The RS implementation also uses the FSMs similarly to the Data Breach implementation. The structure

of the RS component consists of the same building blocks: Spring Boot application, Spring

Statemachine, Kafka and Camel with Swagger UI. Figure 20 depicts the diagram and flow of the RS

component.

The following example was presented on the PALANTIR December 2021 GA meeting. A Kafka

producer (e.g. the AE) is sending to the topic “palantir_demo_1” while on the Spring Boot application

Kafka consumer is subscribed to the same topic and retrieves the incoming JSON based message. Here

JSON contained the “ddos” threat name. Based on received threat name FSM RS1 started its execution.

Because threat was categorized as a “ddos” FSM chooses its right branch and first state “SOFTWARE”

and state “SERVICE RECONFIGURE”. From there, the next state was called as a Java Bean. This Java

Bean is a Kafka client (i.e. a Kafka producer and consumer in the same time) listening on different

topics. First, the Kafka producer sends a message to topic “palantir_demo_2” and another external Kafka

consumer waits for a message on that topic. Once the message is received, it is up to operator to conclude

the FSM by sending a confirmation message. However, this confirmation message is sent to a different

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 34 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

topic “palantir_demo_3”, which the Kafka consumer inside the FSM is waiting to reach the final “END”

state.

Figure 20: RS Component Structure proposition with FSM model.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 35 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

5. Conclusions

This deliverable provides the initial details on the architecture, design, and specification of components

of the Trust, Attestation and Recovery framework.

The document provides the current, up-to-date architecture of the TAR components, refined from the

requirements presented in D2.1, the specification of the interactions among the other components of

PALANTIR and the implementation and integration.

This document is followed by a second iteration, which is “D4.4 Trust, Attestation and Verification

Framework – Specifications of second release”, later in the project with finalized technical details on

specification and implementation of the components comprising the TAR.

Document name: Deliverable 4.2 – Trust Attestation and Verification

Framework – First release

Page: 36 of 36

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

6. References

[1] Trusted Platform Module Working Group, TCG:

TCG Trusted Platform Module Library Specification, Family “2.0”

[2] HPE Distributed Intrusion Monitoring Engine (DIME):

https://community.hpe.com/t5/Advancing-Life-Work/Quis-custodiet-ipsos-custodes-HPE-

next-generation-intrusion/ba-p/7042089#.YbM9nr3P1PY

[3] Apache Kafka: https://kafka.apache.org/

[4] HPE Project Aurora: https://www.hpe.com/us/en/security/project-aurora.html

[5] Keylime project: https://www.keylime.dev
[6] TCG Platform Certificate Profile:

https://trustedcomputinggroup.org/resource/tcg-platform-certificate-profile/
[7] TCG TPM 2.0 Keys for Device Identity and Attestation:

https://trustedcomputinggroup.org/resource/tpm-2-0-keys-for-device-identity-and-attestation/
[8] IEEE 802.1AR: Secure Device Identity: https://1.ieee802.org/security/802-1ar/
[9] Proxmox Virtual Environment: https://www.proxmox.com/en/proxmox-ve

[10] Apache Camel: https://camel.apache.org/

[11] Swagger UI: https://swagger.io/tools/swagger-ui/
[12] Spring Statemachine: https://projects.spring.io/spring-statemachine/

[13] Eclipse Papyrus: https://www.eclipse.org/papyrus/

[14] Postman: https://www.postman.com/

[15] ARM TrustZone: https://developer.arm.com/ip-products/security-ip/trustzone

[16] Intel SGX: https://www.intel.com/content/www/us/en/developer/tools/software-guard-

extensions/attestation-services.html

[17] AMD Secure Encrypted Virtualization (SEV): https://developer.amd.com/sev/

[18] Docker: https://www.docker.com/

[19] Docker Compose: https://docs.docker.com/compose/

[20] Django: https://www.djangoproject.com/

[21] N. Schear, P. T. Cable, T. M. Moyer, B. Richard, and R. Rudd, “Bootstrapping and

maintaining trust in the cloud”, Proceedings of the 32nd Annual Conference on Computer

Security Applications, New York, NY, USA, December 5 - 8, 2016, pp. 65–77, DOI

10.1145/2991079.2991104

https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://community.hpe.com/t5/Advancing-Life-Work/Quis-custodiet-ipsos-custodes-HPE-next-generation-intrusion/ba-p/7042089#.YbM9nr3P1PY
https://community.hpe.com/t5/Advancing-Life-Work/Quis-custodiet-ipsos-custodes-HPE-next-generation-intrusion/ba-p/7042089#.YbM9nr3P1PY
https://kafka.apache.org/
https://www.hpe.com/us/en/security/project-aurora.html
https://www.keylime.dev/
https://trustedcomputinggroup.org/resource/tcg-platform-certificate-profile/
https://trustedcomputinggroup.org/resource/tpm-2-0-keys-for-device-identity-and-attestation/
https://1.ieee802.org/security/802-1ar/
https://www.proxmox.com/en/proxmox-ve
https://camel.apache.org/
https://swagger.io/tools/swagger-ui/
https://projects.spring.io/spring-statemachine/
https://www.eclipse.org/papyrus/
https://www.postman.com/
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://developer.amd.com/sev/
https://www.docker.com/
https://docs.docker.com/compose/
https://www.djangoproject.com/

