

Co-funded by the Horizon 2020

Framework Programme of the European Union

Practical Autonomous Cyberhealth for resilient SMEs &

Microenterprises

Grant Agreement No. 883335

Innovation Action (IA)

D5.1 Hybrid Threat Intelligence Framework – First

Release

Document Identification

Status Final Due Date 31/01/2022

Version 1.0 Submission Date 24/01/2022

Related WP WP5 Document Reference 1.0

Related

Deliverable(s)

D2.1, D3.1, D4.1,

D3.2, D4.3, D5.2

Dissemination Level (*) PU

Lead Participant NEC Lead Author INF

Contributors INF, SPH, NEC,

POLITO

Reviewers SSE

NCSRD

Keywords:

Threat Intelligence, Distributed Collection, Data Preprocessing, Multimodal Anomaly

Detection, Threat Classification, Alarm Management, Recommendation, Remediation

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 2 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

This document is issued within the frame and for the purpose of the PALANTIR project. This project has received funding from the European

Union’s Horizon2020 Framework Programme under Grant Agreement No. 883335. The opinions expressed and arguments employed herein

do not necessarily reflect the official views of the European Commission.
This document and its content are the property of the PALANTIR Consortium. All rights relevant to this document are determined by the

applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents are

not to be used or treated in any manner inconsistent with the rights or interests of the PALANTIR Consortium or the Partners detriment and are
not to be disclosed externally without prior written consent from the PALANTIR Partners.

Each PALANTIR Partner may use this document in conformity with the PALANTIR Consortium Grant Agreement provisions.

 (*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement;
CI: Classified, Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 3 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Dimitris Papadopoulos, Orestis Kompougias,

Katerina Mitropoulou

INF

Thanasis Priovolos, Ilias Balampanis SPH

Davide Sanvito, Roberto Bifulco NEC

Leonardo Regano, Cataldo Basile POLITO

Document History

Version Date Change editors Changes

0.1 06/12/2021 Dimitris

Papadopoulos
Initial Table of Contents and assignment of

contributions.

0.2 24/12/2021 WP5 partners First round of contributions.

0.3 11/01/2022 WP5 partners First full draft ready for internal review.

1.0 18/01/2022 WP5 partners Final version

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader INF 19/01/2022

Quality manager INF 19/01/2022

Project Coordinator DBC 24/01/2022

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 4 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ...3

Table of Contents ...4

List of Tables ..6

List of Figures ..7

List of Acronyms ..8

Executive Summary ...10

1. Introduction ..11

1.1. Objectives and goals of the deliverable .. 11

1.2. Relation with D2.1 and other WPs ... 11

1.3. Structure of the document ... 12

2. Design ...13

2.1. Overview of the Threat Intelligence (TI) component ... 13

2.2. Differences with D2.1 ... 16

2.3. Description of Threat Intelligence subcomponent .. 16

2.3.1. Distributed Collection and Data Preprocessing (DCP) ... 16

2.3.1.1. Interfaces with other components and subcomponents .. 17

2.3.1.2. Modules .. 17

2.3.1.2.1. Collector ... 17

2.3.1.2.2. Registry .. 18

2.3.1.2.3. Data collection ... 18

2.3.1.2.4. Data anonymization ... 18

2.3.1.2.5. Data preprocessing ... 19

2.3.1.2.6. Data storage ... 19

2.3.1.3. Differences with D2.1 .. 19

2.3.2. Multimodal Anomaly Detection (MAD)... 20

2.3.2.1. Interfaces with other components and subcomponents .. 20

2.3.2.2. Modules .. 20

2.3.2.2.1. MIDAS for Network traffic analytics .. 20

2.3.2.2.2. Isolation forest for System log analytics .. 21

2.3.2.2.3. Deep Autoencoder for Network traffic analytics ... 21

2.3.2.2.4. GANomaly for System log and Network traffic analytics 22

2.3.2.3. Differences with D2.1 .. 23

2.3.3. Threat Classification and Alarm Management (TCAM) .. 23

2.3.3.1. Interfaces with other components and subcomponents .. 24

2.3.3.2. Modules .. 24

2.3.3.2.1. Random Forest ... 24

2.3.3.3. Differences with D2.1 .. 24

2.3.4. Recommendation and Remediation (RR) ... 25

2.3.4.1. Interfaces with other components and subcomponents .. 28

2.3.4.2. Modules .. 28

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 5 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

2.3.4.2.1. Input Analyzer ... 28

2.3.4.2.2. Recipe Filter ... 29

2.3.4.2.3. Recipe Instruction Interpreter .. 29

2.3.4.2.4. Output Generator ... 30

2.3.4.3. Differences with D2.1 .. 30

3. Specifications ...31

3.1. Distributed Collection and Data Preprocessing .. 31

3.2. Multimodal Anomaly Detection ... 32

3.3. Threat Classification and Alarm Management ... 34

3.4. Recommendation and Remediation .. 36

4. Implementation ...38

4.1. Distributed Collection and Data Preprocessing .. 38

4.1.1. Implementation details .. 38

4.1.2. Preliminary Evaluation.. 40

4.2. Multimodal Anomaly Detection ... 42

4.2.1. Implementation details .. 42

4.2.2. Preliminary Evaluation.. 43

4.3. Threat Classification and Alarm Management ... 48

4.3.1. Implementation details .. 48

4.3.1. Preliminary Evaluation.. 48

4.4. Recommendation and Remediation .. 49

4.4.1. Implementation details .. 49

4.4.2. Preliminary Evaluation.. 50

5. Conclusions ..51

6. References ..52

7. Annex ...54

7.1. Annex A: Intra-components interfaces ... 54

7.2. Annex B: Data models .. 64

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 6 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1 Specifications of the DCP subcomponent .. 31
Table 2 Specifications of the MAD subcomponent .. 32
Table 3 Specifications of the TCAM subcomponent .. 34
Table 4 Specifications of the RR subcomponent ... 36
Table 5: MIDAS performance on CIC-IDS2017 for a couple of threshold values.. 44
Table 6: MIDAS performance on CIC-IDS2017 split by type of attack .. 45
Table 7: MIDAS performance on CIC-IDS2017 fine-tuning example .. 46
Table 8: DCP_DC_001 interface specification .. 54
Table 9: KAFKA_001 interface specification ... 54
Table 10: DCP_DC_002 interface specification .. 55
Table 11: DCP_DC_003 interface specification .. 55
Table 12: DCP_DC_004 interface specification .. 56
Table 13: DCP_DC_005 interface specification .. 57
Table 14: DCP_DC_006 interface specification .. 57
Table 15: DCP_DC_007 interface specification .. 58
Table 16: DCP_DC_008 interface specification .. 58
Table 17: DCP_AS_001 interface specification ... 59
Table 18: DCP_AS_002 interface specification ... 60
Table 19: KAFKA_002 interface specification ... 60
Table 20: KAFKA_003 interface specification ... 61
Table 21: KAFKA_004 interface specification ... 61
Table 22: KAFKA_005 interface specification ... 62
Table 23: KAFKA_006 interface specification ... 63
Table 24: Netflow schema ... 64
Table 25: Syslog schema ... 65

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 7 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1: PALANTIR architecture .. 13
Figure 2: High-level WP5 subcomponents pipeline .. 13
Figure 3: High-level representation of hybrid Threat Intelligence according to DoA ... 14
Figure 4: Event Handling workflow ... 15
Figure 5: Periodic Attestation workflow ... 15
Figure 6: Dockerized Architecture of the DCP component .. 17
Figure 7: TF-IDF Log Transformation example .. 19
Figure 8: Sequence diagram for the MAD subcomponent .. 20
Figure 9: Isolation Forest. Outliers (red) are less frequent than regular observations and require less splits

(closer to the root of the tree) ... 21
Figure 10: Autoencoder architecture. The forward pass of data is from left to right. The input is first encoded

into a latent vector and then decoded, producing the reconstruction of the input .. 22
Figure 11: GANomaly architecture. A Generative Adversarial Network that relies on 3 autoencoders, the

Generator, the Feature Extractor and the Discriminator ... 22
Figure 12: Sequence diagram for the TCAM subcomponent .. 23
Figure 13: Random Forest architecture. It constructs a multitude of decision trees at training and outputs the

mode of the classes of the individual trees .. 24
Figure 14: Example recipe of the Recommendation and Remediation module .. 26
Figure 15: The RR tool workflow, phase 1: recommendation .. 26
Figure 16: The RR tool workflow, phase 2: deployment ... 27
Figure 17: Architecture of the Recommendation and Remediation tool ... 28
Figure 18: The entire pipeline schema for Distributed Collection and Data Preprocessing mechanism 38
Figure 19: Architecture of designed source connectors for netflow data ... 39
Figure 20: Benchmark with preprocessing flow ... 41
Figure 21: Benchmark without preprocessing flow .. 42
Figure 22: Anomaly scores of individual flows in CIC-IDS2017 dataset computed by MIDAS 44
Figure 23: Results of the Autoencoder anomaly detection algorithm on the CIC-IDS2017 Bot test set 46
Figure 24: Results of the GANomaly anomaly detection algorithm on the CIC-IDS2017 Bot test set 47
Figure 25: Results of the GANomaly anomaly detection algorithm on the USTC-TFC2016 test set.................... 47
Figure 26: Results of the Isolation Forest anomaly detection algorithm on the AIT Log Data test set 48
Figure 27: Classification accuracy and feature importance of RandomForest on USTC-TFC2016 test set for the

netflow case ... 49
Figure 28: Classification accuracy and feature importance of RandomForest on AIT Log data test set for the

syslog case .. 49

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 8 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /

acronym
Description

AIM AOL Instant Messenger

API Application Programming Interface

AS Anonymization Service

BoW Bag of Words

CMS CountMinSketch

CSV Comma Separated Values

DC Data Collection

DCP Data Collection and Data Preprocessing

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DL Deep Learning

DNS Domain Name System

DoS Denial of Service

DP Data Preprocessing

FN False Negative

FP False Positive

FPR False Positive Rate

FTP File Transfer Protocol

GAN Generative Adversarial Network

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDS Intrusion Detection System

IMAP4 Internet Mail Access Protocol version 4

IMAPS Internet Mail Access Protocol over SSL

IP Internet Protocol

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

MAD Multimodal Anomaly Detection

MitM Man in the Middle

ML Machine Learning

NNTP Network News Transfer Protocol

NTP Network Time Protocol

PALANTIR Practical Autonomous Cyberhealth for resilient SMEs & Microenterprises

POP3 Post Office Protocol

RADIUS Remote Authentication Dial-In User Service

ReLU Rectified Linear Unit

REST REpresentational State Transfer

RR Recommendation and Remediation

SC Security Capability

SCC Security Capabilities Catalogue

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 9 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Abbreviation /

acronym
Description

SCHI Security Capabilities Hosting Infrastructure

SCO Security Capability Orchestrator

SDA Semantic Data Aggregator

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SSH Secure Shell

TAR Trust, Attestation and Recovery

TCAM Threat Classification and Alarm Management

TCP Transmission Control Protocol

TF-IDF Term frequency — Inverse document frequency

TFTP Trivial File Transfer Protocol

TI Threat Intelligence

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

URL Uniform Resource Locator

WP Work Package

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 10 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This document presents the description of the first release of all the components related to the Hybrid

Threat Intelligence Framework and related to the work carried out in the context of Work Package 5.

All four tasks have been active through the first year of WP5 activities. An updated version will be

presented in month 32 (April 2023) and will be focused on the second and final release of all the

components.

After an overview of Threat Intelligence components, together with their differences with respect to the

architecture described in deliverable D2.1 (Requirements & High-Level Design), the document

describes the design of individual subcomponents, namely the Distributed Collection and Data Pre-

processing (DCP), the Multimodal Anomaly Detection (MAD), the Threat Classification and Alarm

Management (TCAM) and the Recommendation and Remediation (RR). Then, requirements collected

in deliverable D2.1 related explicitly to WP5 components are reported and translated into technical

specifications. Finally, before the conclusion, the last section provides in greater depth the

implementation details for each one of the subcomponents presented above.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 11 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

1. Introduction

1.1. Objectives and goals of the deliverable

This deliverable, “D5.1 Hybrid Threat Intelligence Framework – First Release” presents the low-level

design and technical implementation of the components involved in the PALANTIR Threat Intelligence

framework, within WP5. It highlights the work performed in tasks T5.1 to T5.4, spanning from the

creation of scalable data ingestion and preprocessing pipelines to the training and evaluation of

analytics-based anomaly detection and threat classification models, as well as to the production of

recommended policies that are leveraged to mitigate the detected threats. For each subcomponent that

comprises the Threat Intelligence Framework, their technical specs (obtained, iterated, and updated from

the core requirements agreed upon in D2.1) and their low-level implementation details for the individual

dependencies, libraries, and tools in use or anticipated to be used, are also provided.

The primary audience of this document are all technical consortium members; i.e., those involved in the

implementation and technical decision taking, who participate either in WP5 and/or in the other directly

or indirectly related WPs (such as WP3 and WP4). This deliverable provides design and implementation

hints that can be of use to any external technical reader involved in the field of security analytics,

leveraging data collection, aggregation and analysis capabilities to perform security functions that

detect, analyse and mitigate cyberthreats.

This deliverable is the first iteration, out of two, within the WP5-related deliverables. The next

deliverable (D5.2) is due in month 32 (April 2023), where the final design and implementation of WP5

components is expected along with finalised interactions, inter-component APIs and other interfaces in

use to enforce the cross-WP workflows within the PALANTIR platform. The next release will also

include the alarm management functionalities that will enable standardised threat intelligence sharing

to/from external sources, via the Threat Sharing component described in D4.1. It should be noted that

some technical aspects of this first release may be subject to change after January 2022, when the

integration of all components will be the major focus, justifying any adaptation required to assure the

components' integrability with the rest of the PALANTIR platform.

1.2. Relation with D2.1 and other WPs

Similarly, to the rest of the technical deliverables relevant to the first release of PALANTIR standalone

components, D5.1 uses D2.1 as a starting point to dive into lower technical details about the WP5-related

activities. This is primarily the case for Section 2, where the original PALANTIR architecture and

agreed workflows are incorporated and adapted to the design of each WP5-related subcomponent.

Moreover, the requirements indicated in D2.1 are mapped to technical specifications in Section 3,

explicitly stating the need for the specific subcomponent impacted by the requirement.

Aside from that, the work presented here has a strong link with WP3-related activities as far as it

concerns: a) the acquisition of traffic from monitoring Security Capabilities described in D3.1 that

provides the input for the Distributed Collection and Data Preprocessing subcomponent (DCP) of D5.1

and b) the mapping of identified threats and their respective mitigation policies produced by the

Recommendation and Remediation (RR) subcomponent of D5.1 to specific available SCs, consequently

implemented as SecaaS services (described in D3.1).

Finally, the work of D5.1 is directly related to WP4, especially with the components described in D4.1.

More specifically, this deliverable defines the workflows for threat detection that allow for threat

monitoring and management through the cybersecurity dashboards of the Portal.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 12 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

1.3. Structure of the document

The structure of the document in the following sections is explained below:

In Section 2, the overall design of the Hybrid Threat Intelligence framework is explained, based on the

architecture of the project. Every subcomponent has its design described, including key ideas, kinds of

data that is communicated or stored, and foreseen interfaces and communications channels with other

PALANTIR components. Afterwards, any internal module is also described in its own subsection, which

includes the explicit goal, behaviour and relations in the internal interactions or workflows devised for

the subcomponent.

In Section 3, the relevant requirements from D2.1 are revisited and mapped to implementation

specifications. This effectively refines more generic requirements into specific technical needs to be

fulfilled, and is aimed towards a more clear and concise definition of the expected features of each

subcomponent.

Section 4 compiles the ensemble of technologies, open-source tools and frameworks used in the

technical implementation of each subcomponent and its respective modules. each module and

submodule. It also emphasises their added benefits and adequacy to the envisaged setting through a per-

module preliminary evaluation.

Section 5 is the conclusion and includes some remarks on what has been achieved and the next steps.

Finally, the provided annexes include the PALANTIR intra-subcomponent interfaces for each of the

aforementioned subcomponents, as well as the definition of the data models that describe the main data

sources for the current release.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 13 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

2. Design

This section details the design choices for the WP5-related Threat Intelligence component and its

internal subcomponents and modules. Specifically, the following sub-sections document the design for

the Distributed Collection and Data Processing (DCP), the Multimodal Anomaly Detection (MAD), the

Threat Classification and Alarm Management (TCAM) and the Recommendation and Remediation (RR)

subcomponents.

2.1. Overview of the Threat Intelligence (TI) component

The Threat Intelligence (TI) component complements the protection provided by the Security

Capabilities (SCs) part of the Secure Services Ecosystem (described in D3.1) with advanced analytics

mechanisms based on Machine Learning (ML) and Deep Learning (DL) and provides automatically

generated remediations to address the detected threats.

The following Figure 1 reports the high-level architecture presented in D2.1 and positions the TI

component within the whole PALANTIR architecture.

Figure 1: PALANTIR architecture

The TI comprises four subcomponents:

1. Distributed Collection and Data Preprocessing (DCP)

2. Multimodal Anomaly Detection (MAD)

3. Threat Classification and Alarm Management (TCAM)

4. Recommendation and Remediation (RR)

From a high-level perspective, the four subcomponents are arranged in a pipeline as reported in the

following diagram (Figure 2).

Figure 2: High-level WP5 subcomponents pipeline

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 14 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

The DCP subcomponent is in charge of collecting data from heterogeneous sources from monitoring

SCs, running pre-processing and anonymization operations to prepare the data in a format suitable for

the ingestion to the subsequent MAD subcomponent.

The MAD subcomponent implements a set of Anomaly Detection methods based on ML and DL taking

into account multiple modalities of data from heterogeneous sources. Examples of modalities considered

so far include network traffic flow information and system logs.

Once an anomaly is detected, a further step is performed by the subsequent TCAM subcomponent,

whose task is the classification of the detected threat either as false positive (FP) or as a specific type of

threat. In case the anomaly is not an FP, information is passed to the final RR subcomponent.

The RR subcomponent is responsible for the automatic generation of remediation for the specific type

of detected threat by providing a set of policies which can be finally used to configure the appropriate

remediation SCs.

The RR subcomponent is, however, not only handling the generation of remediations for threats detected

and classified by MAD and TCAM subcomponents, but also for the ones identified by the monitoring

SCs part of Secure Services Ecosystem. In this case, an SC should be able to directly trigger the RR

subcomponent without involving DCP, MAD and TCAM subcomponents. As depicted in the following

Figure 3, the TI component, by adopting a hybrid approach, simultaneously combines the analytics-

based methods with more traditional signature-based Intrusion Detection Systems (IDSs) which are

deployed as SCs.

Figure 3: High-level representation of hybrid Threat Intelligence according to DoA

In addition to the principal information flow presented above, there are additional per-subcomponent

functionalities and intra-component interactions that will be detailed in the following subsections.

Regarding the interactions with other PALANTIR components, the TI is mainly involved in two cross-

component workflows which are interleaved to the TI-specific pipeline described above: Event

Handling and Periodic Attestation.

Figure 4 depicts the Event Handling workflow. The TI receives network traffic data from monitoring

SCs through DCP’s distributed collectors which are running within the Security Capabilities Hosting

Infrastructure (SCHI). Optionally, system logs are also collected from assets protected by the

PALANTIR solutions (e.g., a medical server containing sensitive data). The MAD subcomponent reads

the input data and performs the Anomaly Detection. In case an anomaly is found, the TCAM

subcomponent classifies the specific type of threat and forwards the threat results to the Portal

component so that an alert is displayed to the user. At the same time, the RR subcomponent generates

recommended policies to mitigate the identified threat. This step requires an interaction with the Security

Security Capability Orchestrator (SCO). The RR subcomponent provides a list of mitigation options,

which finally enables the user to request the the deployment of relevant SCs through an interaction with

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 15 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

the Service Matching (SM) component that is responsible for the selection of the optimal SC along with

the provision of billing information to the user.

The Periodic Attestation workflow is reported in Figure 5. From the TI perspective, part of the steps up

to the detection of a data breach are shared with the previous workflow for threat detection. The

peculiarity of this type of event is that it requires additional operations which go beyond the ones

deployable as SCs and handled by SCO. For this reason, this workflow does not foresee a direct

interaction from RR to the Portal. The rest of the actions are instead handled by the Trust, Attestation

and Recovery (TAR) component and analysed in greater detail in D4.2.

Figure 4: Event Handling workflow

Figure 5: Periodic Attestation workflow

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 16 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

2.2. Differences with D2.1

With respect to the high-level architecture description reported in D2.1, this deliverable provides much

more details regarding the design and implementation of the Threat Intelligence component. The

reported workflows clarify the information flow within TI across its subcomponents and towards the

other PALANTIR components.

The design of the hybrid approach described in D2.1, simultaneously combining the analytics-based

methods with more traditional signature-based Intrusion Detection Systems (IDSs), has not been

completely addressed yet. The first release of the TI component defines individual analytics modules,

but their complete integration, which also requires cross-component interactions, has been postponed

for the final release (due in April 2023). An example of their combination might be represented by the

generation of meta-alerts that comprise ML-based (WP5) and rule-based (WP3) systems.

Another deviation is related to the interaction of the TI component with the TAR component, something

which can be relevant for the detection of data breaches. According to D2.1, the attestation results from

the TAR component are also forwarded to the TI. For the detection of these types of anomalies TI

already includes a MAD module that can analyse syslog data from the deployed infrastructure. Its

detection capabilities could be improved by also considering attestation data (e.g., failed attestation

reports), but, given that this is achievable only after the full integration of all the PALANTIR

components, the use of this additional information has been postponed to the second release.

Additional deviations from D2.1 and related to specific subcomponents are reported in dedicated per-

subcomponent sections.

2.3. Description of Threat Intelligence subcomponent

2.3.1. Distributed Collection and Data Preprocessing (DCP)

The Distributed Collection and Data Preprocessing (DCP) subcomponent is responsible for collecting

different types of data, pre-processing them and making them available for the rest of the PALANTIR

components. DCP can achieve high throughput and low latency in the collection and preprocessing

phases. Both the collection and preprocessing modules are distributed and scalable, in order to meet the

infrastructure’s requirements about the data volume. All modules of DCP can be deployed either on bare

metal (vCPE delivery model) or on a Kubernetes (K8s) cluster.

The DCP subcomponent consists of three main modules: the Data Collection (DC) module, the Data

Preprocessing (DP) module and the Anonymization Service module (AS). Also, there is DCP’s storage,

which uses OpenDistro Elasticsearch. In the current release, the DCP subcomponent supports collection

and pre-processing of netflow data and syslog data.

Data Collection module consists of the Collector, the Registry service and the Source and Sink

Connectors for Kafka. The Registry Service is responsible for storing all instances of Kafka Connectors,

along with their health status (i.e., if a connector is down or not reachable). The Collector is responsible

for collecting binary netflow data and dumping them into nfcapd files. Each time a nfcapd file is created,

the Collector module must find an available Kafka Source Connector for netflow data to forward the

collected nfcapd file. Registry service provides an endpoint, which returns the next available connector,

achieving load balancing (round-robin) between all available connectors. The Collector gets the next

available connector and sends the collected nfcapd file. The Kafka Source Connector for netflow data

converts the received nfcapd file to .csv file and ingests it to Kafka. During ingestion process, each

record of the converted .csv file is a separate Kafka message. The last part of the Data Collection module,

namely the Kafka Sink Connectors, is responsible for ingesting the pre-processed & anonymized

netflow data in DCP’s storage.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 17 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Data Preprocessing module is responsible for two main operations: i) anonymization of the input IP

addresses, ii) creation of features from the collected netflows that are relevant to other components. The

Data Preprocessing module fetches collected netflows from a Kafka topic and writes back in Kafka the

preprocessed & anonymized netflows, to be consumed from other components.

Anonymization Service module consists of a REST service and a storage layer. The storage layer uses

a Redis database and stores pairs of the original and the obfuscated IP addresses. The developed REST

service provides the required endpoints to anonymize and de-anonymize IP addresses. The

anonymization function is implemented using the Crypto-PAn algorithm. The de-anonymization

function is using Anonymization’s storage layer to retrieve a de-anonymized IP address, given an

obfuscated IP address.

Figure 6 shows the dockerized architecture of the DCP subcomponent deployed in PALANTIR’s testbed

and the flow described in the previous paragraph.

Figure 6: Dockerized Architecture of the DCP component

2.3.1.1. Interfaces with other components and subcomponents

The DCP subcomponent interacts with the deployed SCs in order to collect forwarded data from the

infrastructure network devices. It also interfaces with the MAD subcomponent to provide anomynized

and preprocessed streaming data for the execution of the anomaly detection algorithms. Finally, it

interacts with TCAM, in order to de-anonymize the threat findings before they are further pushed to the

RR subcomponent and to the Portal. Given that the DCP constitutes the core data exchange hub of the

TI component, a full list of the implemented interfaces for the first release is provided in Annex A.

2.3.1.2. Modules

2.3.1.2.1. Collector

The Collector module is part of the Data Collection and Preprocessing subcomponent and initiates the

ingestion chain for collected data. This module receives collected data and forwards them to the data

collection module.

In the netflow use case, the Collector module listens to a specific socket, where binary netflows are

forwarded from the PALANTIR infrastructure’s network devices (i.e., a resource hosting SC instances).

Every few seconds (or minutes), the collected netflows are dumped into nfcapd files. The Collector

module forwards the created nfcapd files to the Data Collection module to be ingested in PALANTIR’s

message bus. Prior to forwarding these files, the target endpoint must be identified by the Collector

module. Thus, it communicates with the Registry module, which returns the target endpoint for the

collected file, and then forwards the created nfcapd file accordingly.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 18 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

2.3.1.2.2. Registry

The Registry module is the unit of the Data Collection and Preprocessing subcomponent, which is

responsible for holding information about all instances of the Data Collection module. The Data

Collection module consists of multiple submodules, which are running in a distributed manner. A part

of them is responsible for ingesting data to the PALANTIR’s message bus while the rest of them are

responsible for fetching data from the message bus and sending them to another module.

Whenever a data collection instance is started, it is registered in the Registry module, providing

information regarding its name and its endpoint URL. Respectively, if an instance shuts down gracefully

without errors, an un-register request must be sent in the Registry module to remove it from list of

available instances. Moreover, the Registry module pings all available instances periodically to check

their status. If an instance is down, it is removed from the list of available ones. Finally, as mentioned

above this module is responsible for informing the Collector module about the target endpoint to which

the collected data should be sent, achieving load balancing between the available instances.

2.3.1.2.3. Data collection

The Data collection module consists of multiple submodules, that materialise two different tasks: i)

ingestion of collected and forwarded data to the message bus, ii) fetching of data from the message bus,

conversion to appropriate format and forwarding to other modules (i.e., data storage module). Both tasks

can be completed by running multiple distributed instances of each submodule, achieving high

throughput and low latency.

The Source connector submodule is responsible for the former task (ingestion of data to the message

bus). It consists of three components: i) an API to receive files, ii) a FileWatcher service to check for

new files and iii) a SourceTask process, which ingests collected data to the message bus. In the netflow

use case, the received files are nfcapd files, as they are created from the Collector module.

• The developed API provides an endpoint to receive nfcapd files from the Collector module.

Every received file is converted to a .csv file and is stored under a pre-defined directory

(configured via the source connector’s properties). It is also responsible for registering and un-

registering the source connector from the Registry module and for periodically updating its

status providing its name and its URL endpoint via HTTP requests.

• The FileWatcher service is continuously running in the background checking the directory of

the converted .csv files for new entries. It provides an interface, which must be implemented by

all listeners who receive messages from it. Each time a new entry is detected it sends a message

to all registered listeners, providing the file's name and location.

• The SourceTask process, as a registered listener for FileWatcher events, implements the

interface provided by it. Following the observer pattern, when FileWatcher sends a new

message, SourceTask receives it. This message contains information about the file that must be

ingested in the message bus. SourceTask opens the file, reads it line by line and ingests each

line as a different message in the message bus. For the netflow use case, each line describes a

netflow record.

The Sink connector is the submodule which is responsible for achieving the latter task (fetching data

from message bus and forwarding them to other modules). It can also have multiple instances and run

in a distributed manner. For the netflow use case, sink connector module instances fetch preprocessed

& anonymized netflows from the message bus, convert them to appropriate JSON format and then send

them to the Data storage module. A similar process is also followed for the syslog use case.

2.3.1.2.4. Data anonymization

Data Anonymization module is composed of three submodules: i) the core application service which is

responsible for data anonymization/ de-anonymization, ii) a fast storage layer for saving original and

anonymized pairs of data, so that de-anonymization can be executed with low latency, iii) a web user

interface for monitoring and assisting the usage of the storage layer.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 19 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

In the netflow case the core application service anonymizes and de-anonymizes the IP addresses.

Preprocessing module sends the IP addresses that need to be anonymized in the core application service

and waits for an obfuscated IP address as response.

2.3.1.2.5. Data preprocessing

Data preprocessing module is responsible for applying all defined preprocessing functions in the raw

data. The defined preprocessing functions create new features that are useful to the rest of the

PALANTIR components, exploiting existing features of the collected data.

In the netflow case, five preprocessing functions are applied in collected raw netflow data. The first pair

of functions is responsible for encoding the protocol (pr) and TCP flags (flg) columns using one-hot

encoding. The second pair of functions calculates the total number of flow’s packets and bytes. When

they are applied to bidirectional netflows the result of the former equals to the sum of the ingoing packets

(ipkt) plus the outgoing packets (opkt) whereas the result of the latter equals to the sum of the ingoing

bytes (ibyt) plus the outgoing bytes (obyt). In the case of non-bidirectional netflows the number of

outgoing packets (opkt) and bytes (obyt) equals to zero, so the results of these two functions are equal

to the ingoing packets (ipkt) and ingoing bytes (ibyt) respectively. The final preprocessing function

extracts a new feature from the given netflow data, indicating if the destination port of the netflow is a

commonly used port of a known service. Below are the listed services alongside with their commonly

used ports (in parenthesis): FTP (20, 21), SSH (22), Telnet (23), SMTP (25), DNS (53), DHCP (67, 68),

TFTP (69), HTTP (80), HTTPS (443), POP3 (110), NNTP (119), NTP (132), IMAP4 (143), SNMP

(161), LDAP (389), IMAPS (993), RADIUS (1812), AIM (5190).

For the syslog case, a log processing pipeline has been established in order to apply machine learning

on the collected system logs from monitored assets (e.g., protected servers), covering the need to convert

the textual logs to numerical features. Subsequently, anomaly detection and threat classification

algorithms are used to detect and classify logs that are correlated with potentially malicious behaviour.

Term frequency - Inverse document frequency (TF-IDF) algorithm was applied to transform the textual

system logs to their vector representations (sparse embeddings). TF-IDF is based on the Bag of Words

(BoW) model [1], which contains insights about the less relevant and more relevant words in a

document. The importance of a word in the text is of great significance in information retrieval. The

process is depicted in Figure 7.

Figure 7: TF-IDF Log Transformation example

2.3.1.2.6. Data storage

The Data Collection and Preprocessing subcomponent includes a storage layer which enables the storing

of the collected data. The collected data are converted to JSON format by the Data collection module

and are then forwarded to the storage layer.

2.3.1.3. Differences with D2.1

So far there are some limitations compared to the Threat Intelligence paragraph in deliverable D2.1.

Distributed collectors have been deployed as described. They can collect forwarded network and syslog

data from any device either physical or virtual, if the data are in binary format describing netflow

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 20 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

records. The existing limitation (which will be addressed in the second release) is that only netflow

records in binary format can be collected at the moment and there are no collectors for collecting event

and logs from these devices. The collected data are preprocessed and anonymized in real time, and they

are stored in a distributed file system as described in D2.1. Also, they are in format that can be read from

Multimodal Machine Learning module.

2.3.2. Multimodal Anomaly Detection (MAD)

The Multimodal Anomaly Detection (MAD) subcomponent is responsible for running a set of Anomaly

Detection modules able to detect abnormal behaviours from heterogeneous sources of data. The MAD

subcomponent works in strict contact with the following TCAM module. Indeed, the detected anomalies

can potentially contain security threats that will be specifically classified by the next subcomponent.

At the current status, two types of data sources have been considered: network traffic data and system

logs. For each data type, multiple Anomaly Detection modules can be run in parallel, each one better

suited for particular types of anomalies. This is depicted in the following sequence diagram. It should

be noted that the results produced by multiple modules related to the same data modality (e.g., network

traffic data) should be aggregated before triggering the threat classification. In other words, the TCAM

subcomponent is triggered at most once per network flow, whenever at least one Anomaly Detection

module (among the ones targeting network traffic data) marks the flow as anomalous.

Figure 8: Sequence diagram for the MAD subcomponent

2.3.2.1. Interfaces with other components and subcomponents

The MAD subcomponent mainly interacts with DCP and TCAM subcomponents. The input data for the

Anomaly Detection algorithms comes from DCP and, in case an anomaly is detected, output data

proceeds further in the processing pipeline and is passed as input to the TCAM.

2.3.2.2. Modules

2.3.2.2.1. MIDAS for Network traffic analytics

MIDAS [2] is an Anomaly Detection algorithm suitable for dynamic graph data, i.e., a graph where the

set of nodes and edges changes over time. Network traffic data can be mapped into a graph

representation by considering the endpoints of a connection (e.g., the source and destination IP

addresses) as graph nodes and the connections themselves as edges linking two nodes. MIDAS aims at

detecting microcluster anomalies which are defined as unusual behaviour in terms of suddenly arriving

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 21 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

groups of suspiciously similar edges. Such edges are similar in two dimensions: spatially (regarding the

nodes they connect in the graph) and temporally (regarding the time frame they appear in).

The input data for MIDAS, which also defines the granularity of its detection, is a single graph edge.

Individual network connections are assigned an anomaly score which can be tested against a threshold

to mark each connection as normal or anomalous. Further details about the tuning of the threshold are

reported in Section 4.2. It should be noted that although edges are individually classified, the anomaly

score is computed by taking into account the past history of the traffic or, in other words, the current

status of the dynamic graph. Two types of anomalies are well detected by MIDAS: the ones manifesting,

with respect to what has been observed in the past, an unusually higher rate of connections among the

same pair of network nodes or an unexpectedly higher rate of network connections towards/from a set

of nodes from/towards a single node.

In addition to the streaming nature of its approach, MIDAS has two additional features that make it

appealing for the TI. First, the set of graph nodes (i.e., the source-destination pairs of the network

connections) is not fixed a priori. Second, MIDAS implementation has a constant memory and update

time. These two characteristics make it particularly suitable for the real-time requirement of TI.

2.3.2.2.2. Isolation forest for System log analytics

Isolation Forest is an anomaly detection algorithm that exploits the concept of “isolated” observations

after applying a random forest of decision trees [3]. The reasoning is simple, anomaly observations are

easy to isolate because they will show a significantly shorter path length (Figure 9). Isolation Forest is

suitable for diverse dataset types and shows an acceptable memory usage, rendering it a promising

technique to apply in anomaly detection for cybersecurity incidents based on large batches of system

logs. It is also worth mentioning that the training process can be achieved with normal and anomalous

traffic in the same dataset, thus making it valid for production environments.

Figure 9: Isolation Forest. Outliers (red) are less frequent than regular observations and require less

splits (closer to the root of the tree)

2.3.2.2.3. Deep Autoencoder for Network traffic analytics

The vanilla implementation of Autoencoders is a Neural Network architecture whose purpose is to learn

the underlying distribution of data by forcing dimensionality reduction and reconstruction of the original

input. Autoencoders receive an input x∈RN, which gets passed through a series of Neural Network layers

that produce progressively smaller outputs (Encoder), as shown in Figure 10. This bottleneck performs

dimensionality reduction of the input x to a latent vector z∈RL<N. The latent vector is then passed through

a series of Neural Network layers that produce progressively bigger outputs (Decoder) producing the

output x0 with the goal of reproducing the original input x. Autoencoders for non-binary regression are

trained using the Mean Squared Error loss.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 22 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Figure 10: Autoencoder architecture. The forward pass of data is from left to right. The input is first

encoded into a latent vector and then decoded, producing the reconstruction of the input

In order to detect anomalous behaviour, Autoencoders are trained with normal/benign traffic only and

are expected to produce outputs with a high loss when fed with anomalous data. This happens because

anomalies do not belong to the distribution of normal behaviour that is learned by Autoencoders.

2.3.2.2.4. GANomaly for System log and Network traffic analytics

The GANomaly architecture proposed comprises a Generative Adversarial Network (GAN) [4], [5]

based on the aforementioned Autoencoder architecture, purposefully built for outlier detection purposes.

A GAN is comprised of two neural networks contesting with each other in a zero-sum game, depicted

in Figure 11.

Figure 11: GANomaly architecture. A Generative Adversarial Network that relies on 3 autoencoders,

the Generator, the Feature Extractor and the Discriminator

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 23 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

The Generator network aims to learn the underlying data distribution and produces samples from the

learnt distribution. The Discriminator network identifies data as either real or generated by the

Generator. After training, the Generator can be used to generate new samples or perform various other

tasks. GANomaly is a GAN that uses an Autoencoder as the Generator. Two extra encoders are also

employed, one being the Discriminator and the other being a feature extractor that re-encodes the

reconstructed input. The Generator’s loss is a weighted sum of three loss functions which all aim to help

the Generator learn the underlying data distribution so that any outliers stand out from the other data

points.

On inference mode, the prediction relies on deciding whether each data sample is an outlier or not, given

its anomaly score A. This score is calculated by taking the difference between the feature extractor’s

latent vector and that of the Generator, which we scale to [0,1]. A high anomaly score means a high

confidence of the sample being malicious, while a low score means that the sample is predicted as being

normal. The decision boundary can be defined on a per-use case basis depending on the precision-recall

trade-off that is acceptable.

2.3.2.3. Differences with D2.1

As anticipated in Section 1.2, the main deviation relevant to the MAD subcomponent is related to the

combination of analytics-based methods with more traditional signature-based Intrusion Detection

Systems (IDSs). This combination requires interactions with other PALANTIR components

(specifically with WP3 components) and will be addressed in the second release.

2.3.3. Threat Classification and Alarm Management (TCAM)

The outlier flows (flows that signify malicious/suspicious behaviour) detected by the MAD module, are

pushed to the TCAM module. The latter is responsible for classifying them either as false positives or

as threats, and providing a corresponding confidence score for each predicted label.

In a similar way to the MAD subcomponent, TCAM is responsible for assigning threat labels on two

distinct data modalities: network traffic data and system logs. For each data type, the corresponding

TCAM modules are implemented as independently trained models which can be run in parallel.

In this first release, two Random Forest machine learning models were trained to support the core threat

detection functionalities for the aforementioned data modalities. It should be noted that, although their

algorithmic design is similar in both cases, each model receives different data as input (i.e., nfcapd files,

system logs) and is relevant for complementary attack scenarios (i.e., network-based threats, endpoint-

based threats). The operations handled by TCAM are illustrated in the following sequence diagram.

Figure 12: Sequence diagram for the TCAM subcomponent

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 24 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

2.3.3.1. Interfaces with other components and subcomponents

The TCAM subcomponent interacts with the DCP, MAD and RR subcomponents. The output of the

Anomaly Detection algorithms from MAD (detected anomalies) is provided as input to the TCAM

modules. TCAM then assigns a threat label to each identified anomaly along with a classification

confidence score and passes this information to the RR subcomponent which is tasked with proposing

remediation policies relevant for the threat at hand, and to the DCP subcomponent which handles storage

and forwarding to other PALANTIR components (e.g., Portal).

2.3.3.2. Modules

2.3.3.2.1. Random Forest

Random Forest is an ensemble, supervised machine learning method used for classification. It constructs

a multitude of decision trees at training time and outputs the mode of the classes (the most repeated

value) of the individual trees as the final class [6]. Essentially, each tree’s prediction is counted as a vote

for one class and the final label is predicted to be the class which receives the most votes (majority vote)

(Figure 13). The algorithm applies the general technique of bootstrap aggregation (or bagging) to tree

learners, leading to a better performance model by decreasing the variance, without increasing the bias.

Random forest is considered one of the best-performing ML algorithms, mainly because of its ability to

remove decision trees' habit of overfitting the training set (being too much dependent on the training set

and not performing so well in the testing set) and of its excellent classification accuracy compared to

current algorithms [7]. In the case of network traffic classification, the datasets are usually unbalanced

since the majority class (normal traffic) is usually orders of magnitude higher than the minority classes

(attack flows). Therefore, classifiers are overwhelmed by the dominating class and tend to ignore the

flows related to malicious activity. Random forest is of no exception, thus techniques like cost-sensitive

learning and oversampling of the minority class are leveraged to tackle this issue.

Figure 13: Random Forest architecture. It constructs a multitude of decision trees at training and

outputs the mode of the classes of the individual trees

2.3.3.3. Differences with D2.1

Two main deviations relevant to the TCAM subcomponent are identified below:

• According to D2.1, only network-based information is provided as input to the classification

algorithms of the Hybrid Threat Intelligence component. However, during the early

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 25 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

implementation activities of the project, it became apparent that specific types of threats

(specifically those related to endpoint events such as data breaches) are typically not detectable

using this modality. To this end, WP5 partners decided to further extend the detection

capabilities of the TI by introducing an additional data modality (syslog data), resulting in the

implementation of the corresponding classification algorithm that enables real-time monitoring

of endpoint events by consuming system logs.

• Given that the focus of T5.3 partners for this first release was given on the training of threat

classification models for the aforementioned modalities and the integration activities with the

rest of the TI subcomponents, the threat sharing functionalities mentioned in D2.1 (“Threat

Intelligence data is shared using STIX format”) was pushed to the final release of the TCAM

subcomponent.

2.3.4. Recommendation and Remediation (RR)

The Recommendation and Remediation tool is in charge of:

• recommending the actions to take in order to mitigate the increased threats that other

PALANTIR tools have identified. The information about the risks to mitigate is reported in a

Threat Intelligence Report from the pipelined analytics components (i.e., TCAM threat

findings). The solutions that are identified by the RR tool named remediation recipe, which are

sequences of actions that are explained in an abstract format.

• deploying the recipe selected by the PALANTIR user, which produces the set of changes to

perform to the landscape (e.g., adding new security controls, such as SC configrations) and the

changes to the configuration of the security controls in the landscape (including the ones that

the RR tool proposes to add).

All the remediation recipes are characterised by:

• a set of labels that indicate the threat scenario for which they have been developed.

• a set of enabling constraints that allow understanding all the constraints for their applicability.

For instance, they report all the information necessary for their correct deployment and the

security capabilities they need to be enforced (e.g., a layer7 filter), which may not be available

in the network.

• the set of remediation deployment instructions, written in an abstract language, that

programmatically state all the steps that need to be performed to remediate the identified risks.

Figure 14 reports an example recipe that can be fed to the Recommendation and Remediation module.

In particular, this recipe is able to remediate an ongoing attack on a specific host in the network by

inserting in the path between the attacker and the target host a control on a specific payload. For example,

this can be useful if the impacted host has become part of a botnet, and the Command and Control

messages between them exhibit a specific string that can be filtered to disrupt the communication

between the bot and the botnet master.

The language describes different concepts, which are reported here using different colours:

• the operations that are available as they are exposed either from the PALANTIR framework or

any of its components, in green, e.g.:

▪ adding security controls,

▪ modifying the configuration of specific security controls,

▪ modification to the network layout or flows,

• language-specific concepts, in red, introduced to satisfy the language required features, e.g.:

▪ results from past computations,

▪ placeholders for predefined concepts,

• inputs from the threat intelligence findings from TCAM, in orange.

It should be noted that the actions are tailored to the actual landscape of the target network. In this case,

if a security control with payload filtering capability is already present in the path from the impacted

host to the attacker, the existing control is reconfigured to filter the target payload; otherwise, new

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 26 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

security control is placed in front of the impacted host, and is properly configured with the needed

filtering rules.

Figure 14: Example recipe of the Recommendation and Remediation module

The target landscape is described using a Landscape Description Language. This is a graph-based

representation of the network layout, which describes both nodes (and their attributes, e.g., capabilities)

and edges. This representation is prone to be imported with graph libraries available for the main

programming languages (e.g., iGraph on Python). Currently, it is represented as a simple text file that

follows the specification defined during a past EC-funded project (SECURED [8]). However, the final

format for the landscape description has not been decided. Furthermore, we are also investigating the

possibility of avoiding using network graphs if the network flows will be expressive enough for our

needs.

This component will implement the following workflow, which can be divided into two phases:

• recommendation of recipes (see Figure 15);

• deployment of the selected recipe (see Figure 16).

Figure 15: The RR tool workflow, phase 1: recommendation

When the RR tool receives the notification of a risk to mitigate in the form of a Threat Intelligence

Report (TIR), it uses the information in the TIR to look up into a database where all the remediation

recipes are stored (DB lookup). All the remediation recipes are labelled according to a standard set of

list_paths from impacted_host_ip to 'attacker’

iterate_on path_list

find_node of type ‘l7filter’ in iteration_element

if not present

add_firewall behind impacted_host_ip in iteration_element with level 7

add_filtering_rule predefined_rules to new_node

else

add_filtering_rule 'filter_payload_X' to found_node

endif

end iteration

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 27 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

categories. For instance, the recipe to mitigate the risks from a malware infection is labelled as ‘malware’

and further refined with additional more specific data, as ‘botnet’ or ‘ransomware.’ If needed, custom

recipes against specific strains of malware may be added to increase the efficacy of the proposed

mitigations. The TIR includes the same set of labels, allowing very fast filtering of the recipes.

The recipes produced by the DB lookup phase are all the recipes that can mitigate a specific set of

threats. Nonetheless, it is not ensured that these recipes could be deployed in the current threat scenario

affecting the target landscape at this stage. For this purpose, an additional step is performed, named

Applicability Check, where all the enabling constraints are evaluated. The applicability report lists all

the directly applicable recipes. All the recipes that have not been evaluated as applicable report the

constraints that were not satisfied. Therefore, a user analysing the report can provide additional

information that can make additional recipes applicable (e.g., missing IP/URL information or missing

information about honey pot networks). The additional data provided by the users are saved in a special

data structure named TIR integration (e.g. within the RR subcomponent). In this way, these data are

neither forgotten nor merged with official information coming from the tool. It is a future task to

understand how this information can be integrated into future versions of the PALANTIR framework.

Figure 16: The RR tool workflow, phase 2: deployment

The next phase of the RR tool workflow starts when the user decides the remediation recipe to enforce.

At this point, the Recipe Deployment Engine reads and starts interpreting the deployment instructions.

In the first phase, all the generic concepts are made concrete with the TIR and the TIR Integration

information. Taking as an example the recipe in Figure 14, the generic concepts “impacted_host_ip” to

“attacker” are substituted with their actual IP addresses, as provided by the TIR (following a de-

anonymization process from DCP), in order to list all the possible paths between the impacted host and

the attacker.

A remediation recipe interpreter executes the deployment instructions with concrete information and

generates as output:

• (optionally, if the networked scenario where the remediation takes place needs it) a set of

suggested changes to the landscape. It should be noted that while some of these changes may

be performed automatically based on the functionalities of the existing SCs, others will require

access to the network/infrastructure from the client’s side . Examples of these changes are:

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 28 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

▪ moving network nodes to a different position in the network

▪ removing nodes from the network

▪ changing the network connectivity (either by connecting a node to a different network

or by redefining the flows by changing the routing information)

▪ adding nodes (e.g., security capabilities)

• a list of all the security capabilities involved by the remediation together with the changes to the

configurations of all the involved security capabilities, either already present in the landscape

or proposed by the RR tool and evaluated by the SM component in terms of feasibility and cost.

These configurations are provided with an abstract language (medium-level policy language)

that configures standard security features.

2.3.4.1. Interfaces with other components and subcomponents

The RR tool interacts (or will interact in future iterations) with the following PALANTIR components:

• TCAM, which will provide this subcomponent with the information discovered by the threat

intelligence;

• Security Capability Orchestrator (SCO), which will process the instructions provided as output

by this subcomponent to actually remediate the threat scenario identified by the TCAM.

• Service Matching (SM) for proposing a deployment plan per identified recipe based on the

current status of the infrastructure.

• Recovery Service (RS), in cases that involve infrastructure-related mitigation actions (e.g., node

attestation scenarios).

2.3.4.2. Modules

Figure 17: Architecture of the Recommendation and Remediation tool

This section provides insights into the Recommendation and Remediation tool (see Figure 17),

particularly detailing the sub-modules constituting the tool and the communications intercurring

amongst them.

2.3.4.2.1. Input Analyzer

The Input Analyzer is tasked with the interpretation of the Threat Intelligence Report. It extrapolates

from the TIR the information needed to enrich the recipe instructions with concrete information. This

includes the type of risk that must be remediated and the IP addresses (and possibly the TCP/UDP ports)

of the impacted hosts and the attacker.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 29 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

The input Analyzer stores the interpreted information into a Knowledge Base (KB), which is used to

store all the data produced by all the RR tool components.

The Input Analyzer is also the module that parses and stores into the KB the additional information

provided by the user as TIR Integration.

2.3.4.2.2. Recipe Filter

The Recipe Filter is the module that reads from the KB both the TIR and TIR integration. It extracts the

labels and the additional information that allows categorizing the threats. From the extracted

information, this module properly selects the Recipe that applies. More precisely, this module queries

the RR Recipe DB and:

• extracts the applicable recipes

• checks the satisfaction of the enabling constraints associated with selected recipes

• produces the Applicability Report

• produces the Applicable Recipe list.

The Applicability Report is then presented to the user. The Applicability report is currently a list of

Recipes and the information that the Recipe Filter was not able to collect or verify the Enabling

Constraints. Examples of Enabling constraints are:

• check for the presence of specific attributes (e.g., the IP addresses of the C2 for malware

infections);

• need for specific security capabilities (e.g., if the Security Capability Catalogue contains an

element able to filter by URLs).

The recipes in the Applicability Report for which all the constraints are satisfied are listed in the

Applicable Recipe List.

2.3.4.2.3. Recipe Instruction Interpreter

This module is in charge of deploying the recipe that it receives as input. The recipe to deploy is received

as user input.

When the user selects a recipe amongst the applicable ones presented by the Recipe Filter, the Recipe

Instruction Interpreter (RII) interprets the deployment instructions contained in the recipe. This module

concretizes them using the information contained in the Knowledge Base.

For the interpretation of deployment instructions, the RII may need to delegate computations to specific

Enrichment Modules. These modules expose methods and attributes that can be used when writing

recipes and save their results. Currently, two Enrichment Modules have been implemented.

• The Landscape Analysis Module is in charge of working on the network graph. For instance, it

exports:

▪ operations on nodes and edges, e.g., querying for nodes having specific properties

(find_node)

▪ operation on paths, e.g., list all the paths between two network nodes, check

reachability between nodes (list_paths)

• The Capability Management Module represents the interface to the PALANTIR Security

Capability Catalogue (the ‘Level 7’ used when adding a firewall).

The result of the execution of the recipe, which is also stored in the KB, is a set of instructions that

represent the modifications to the current landscape:

• changes to the landscape such as:

▪ adding new nodes, including adding new security capabilities

▪ deleting edges and disconnecting nodes from the network

▪ moving nodes to different networks

• change to the security capabilities configurations:

▪ adding rules to the configurations of specific security capabilities.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 30 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

2.3.4.2.4. Output Generator

When the interpretation of all the deployment instructions is complete, the Output Generator reads the

KB and provides the output to the user.

This module outputs:

• the needed modifications to the landscape, including, for example, new security capabilities that

must be deployed and the necessary alterations to the connections amongst network nodes,

which will be sent to the Security Capability Orchestrator for their deployment;

• the configurations for both the new and the existing Security Capabilities, which will also be

sent to the Security Capability Orchestrator for deployment;

• a set of deployment logs describing all the actions taken to remediate the risk.

This module is currently a simple interface to the KB. However, more features could be needed in the

future for directly interacting with the Security Capability Orchestrator and pushing commands.

2.3.4.3. Differences with D2.1

The D2.1 only provided the description of the functionalities and requirements of the RR Module. Both

these data have not been changed. On the other hand, this deliverable presents the initial architecture,

workflows, and data models.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 31 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

3. Specifications

This section continues with mapping the relevant PALANTIR requirements provided in D2.1 to actual

technical specifications for each TI subcomponent. The technologies and frameworks mentioned in this

section are further described in Section 4.

3.1. Distributed Collection and Data Preprocessing

Table 1 Specifications of the DCP subcomponent

Req. ID Requirement description

C
o

ll
ec

to
r

R
eg

is
tr

y

D
a

ta

C
o

ll
ec

ti
o

n

D
a

ta

P
re

p
ro

ce
ss

in
g

D
a

ta

A
n

o
n

y
m

iz
a

ti
o

n

D
a

ta
 S

to
ra

g
e

R1.1.3 The platform MUST provide near-real-time

(NRT) data processing functionalities.
✓ ✓ ✓ ✓ ✓ ✓

DCP_S1 A tool; named nfcapd has been used for collecting netflows in the Collector module.

These collected netflows are the input of the DCP subcomponent. Kafka connectors in

the Data Collection module implemented Kafka Connect API have been used for

ingesting data to Kafka and fetching data from Kafka to insert them to Elasticsearch.

Data Preprocessing module is a Spark Streaming application which preprocess and

anonymizes collected data, using the Data Anonymization module, which implements

Crypto-PAn algorithm.

R1.4.6 The platform SHOULD provide an AI based

solution to deliver services, and be shared across

the plain field; however, the data-sharing must

ensure anonymity.

-- -- -- -- ✓ --

DCP_S2 The anonymization of data is happening in Data Anonymization module. This module

uses Crypto-PAn algorithm for anonymizing IP addresses. It also provides an API for

HTTP requests for anonymizing or de-anonymizing IP addresses. The mapping between

the original and the obfuscated IP addresses is stored in a Redis database.

R1.5.1 The platform SHALL be able to collect and

analyse events from heterogeneous sources in

near real time in order to detect security

incidents.

✓ ✓ ✓ ✓ ✓ ✓

DCP_S3 A tool, named nfcapd has been used for collecting netflows in the Collector module.

These collected netflows are the input of the DCP subcomponent. Kafka connectors in

the Data Collection module implemented Kafka Connect API have been used for

ingesting data to Kafka and fetching data from Kafka to insert them to Elasticsearch.

Data Preprocessing module is a Spark Streaming application which preprocess and

anonymizes collected data, using the Data Anonymization module, which implements

Crypto-PAn algorithm. The scalability offered by Data Collection and Data

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 32 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Preprocessing modules can handle a big volume of data with low latencies and achieve

near real-time ingestion and preprocessing.

R1.5.2 The platform SHALL be able to analyse and

combine different modalities of data to detect

anomalies in nearly real time.

✓ ✓ ✓ ✓ ✓ ✓

DCP_S4 A tool, named nfcapd has been used for collecting netflows in the Collector module.

These collected netflows are the input of the DCP subcomponent. Kafka connectors in

the Data Collection module implemented Kafka Connect API have been used for

ingesting data to Kafka and fetching data from Kafka to insert them to Elasticsearch.

Data Preprocessing module is a Spark Streaming application which preprocesses and

anonymizes collected data, using Data Anonymization module, which implements

Crypto-PAn algorithm. The scalability offered by Data Collection and Data

Preprocessing modules can handle a big volume of data with low latencies and achieve

near real-time ingestion and preprocessing.

R1.5.7 The data involved in the analytics processes

MUST be anonymized.
-- -- -- -- ✓ --

DCP_S5 The anonymization of data is happening in the Data Anonymization module. This

module uses Crypto-PAn algorithm for anonymizing IP addresses. It also provides an

API for HTTP requests for anonymizing or de-anonymizing IP addresses. The mapping

between the original and the obfuscated IP addresses is stored in a Redis database.

3.2. Multimodal Anomaly Detection

Table 2 Specifications of the MAD subcomponent

Req. ID Requirement description

M
ID

A
S

Is
o
la

ti
o
n

 F
o
re

st

A
u

to
E

n
co

d
er

G
A

N
o
m

a
ly

R1.5.2 The platform SHALL be able to analyse and combine different

modalities of data to detect anomalies in nearly real time
✓ ✓ ✓ ✓

MAD_S1 Different Anomaly Detection modules from MAD subcomponent target different

modalities of data, e.g., network flow data and system logs. The requirement of

operating in near real time is addressed either by design (e.g., MIDAS implementation

works in constant time and space) or by using scalable frameworks for ML inference

(e.g., PySpark).

R1.5.5 The platform SHOULD provide analytics able to detect the most

common threat types (malware, MitM, volumetric attacks).
✓* ✓* ✓* ✓*

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 33 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

MAD_S2 The benchmark datasets used for the preliminary evaluation covers part of the most

common threat including, e.g., malware, DoS, DDoS and PortScan traffic. In this first

release, MitM traffic is not available in our datasets.

R1.5.6 The platform SHOULD provide analytics able to detect phishing

attacks.
-- -- -- --

MAD_S3 Not addressed in the first release. The fulfilment of this requirement is planned for the

second release (D5.2).

R1.5.7 The data involved in the analytics processes MUST be anonymized ✓ ✓ ✓ ✓

MAD_S4 Input data for MAD modules is provided as output of DCP after personal information

has been anonymized.

R1.5.8 The platform SHALL provide periodic retrain functionalities for its

analytics components (e.g., on a monthly basis).
-- -- -- --

MAD_S5 The first release has been more focused on the inference phase, assuming a one-time

offline training for the models. DCP subcomponent already defines in its operations the

storage of the data in ELK. The amount and type of data available for periodic re-

training is also affected by the data retention policies. The fulfilment of this requirement

is planned for the second release (D5.2).

R2.1.1 The analytics of the platform SHOULD be able to scale with respect to

the number of data sources, the volume and the velocity of data streams.
✓ ✓ ✓ ✓

MAD_S6 The scalability of the analytics components is achieved either by design (e.g., MIDAS

implementation works in constant time and space) or by using scalable frameworks for

ML inference (e.g., PySpark).

R2.1.2 The analytics components of the platform SHOULD be able to deal with

the computational and memory limitations posed by large datasets.
✓ ✓ ✓ ✓

MAD_S7 The technical implementation of MAD components is based on scalable distributed

machine learning frameworks and on linearly scalable algorithms with respect to the

input data.

R2.2.1 PALANTIR deploys various big data analytics frameworks that have

demands in computational power. They MUST be regularly evaluated

during development, such that they are shown to be accurate with real-

time data.

✓* ✓* ✓* ✓*

MAD_S8 The preliminary evaluation of benchmark datasets (Section 4) confirms accurate

inference on real-time data. The fulfilment of this requirement is planned for the second

release (D5.2).

R2.2.2 PALANTIR SHOULD outperform existing conventional methods from

potential competitors.
-- -- -- --

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 34 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

MAD_S9 Fulfilment of this requirement premises an integrated PALANTIR platform. It will

therefore be addressed in the final release of the Hybrid Threat Intelligence framework

(D5.2).

R2.2.3 The time to discover critical info & alerts in the security dashboard

MUST NOT exceed 1 minute.
✓ ✓ ✓ ✓

MAD_S10 The time required to process a single flow by all anomaly detection components

(MIDAS, IF, AutoEncoder, GANomaly) is less than 1 second.

R2.2.7 The platform MUST showcase a reduction of false positives and

negatives of at least 15% compared to commercial solutions.
-- -- -- --

MAD_S11 Fulfilment of this requirement premises an integrated PALANTIR platform. It will

therefore be addressed in the final release of the Hybrid Threat Intelligence framework

(D5.2).

R2.6.2 The PALANTIR modularity level SHOULD allow enough

independence of all modules so as if any module needs to be replaced,

this has no consequences to the other modules.

✓ ✓ ✓ ✓

MAD_S12 The three modules part of MAD run independently on each other consuming data from

a common Kafka topic.

R2.7.5 PALANTIR SHOULD reuse existing open- source software and tools,

where it is appropriate and possible according to the license.
✓ ✓ ✓ ✓

MAD_S13 The three modules part of MAD are all based on open-source software.

R2.7.6 The architecture of PALANTIR MUST be open, extensible, providing

ability to add new functional components.
✓ ✓ ✓ ✓

MAD_S14 MAD design allows the addition of further AD modules to complement MAD detection

performance.

3.3. Threat Classification and Alarm Management

Table 3 Specifications of the TCAM subcomponent

Req. ID Requirement description

R
a

n
d

o
m

F
o

re
st

R1.5.3 The platform SHALL be able to automatically classify the type of anomaly/threat and

to share the intelligence information in a standard format.
✓*

TCAM_S1 TCAM implements automated threat classification relying on supervised learning

(Random Forest). In this first release, threat findings are provided in JSON format,

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 35 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

attaching the class label and classification confidence score to the existing data schema.

Threat sharing functionalities that are leveraging standardised threat representation

(STIX/TAXII) are planned for the second release of the Hybrid Threat Intelligence

framework (D5.2).

R1.5.5 The platform SHOULD provide analytics able to detect the most common threat types

(malware, MitM, volumetric attacks).
✓

TCAM_S2 TCAM complements the threat detection capabilities of MAD by predicting the class

of discovered anomalous activity. Since TCAM relies on supervised learning, it can be

trained to identify the threat label of any attack for which a labelled training dataset

exists.

R1.5.6 The platform SHOULD provide analytics able to detect phishing attacks. --

TCAM_S3 Not currently addressed due to lack of training data; planned for second TCAM release.

R1.5.8 The platform SHALL provide periodic retrain functionalities for its analytics

components (e.g. on a monthly basis).
✓*

TCAM_S4 The first TCAM release focused on the inference phase (classification of detected

anomalies). Both the design of the subcomponent (selected algorithms) and its

implementation details (selected frameworks) support periodic retrain functionalities,

which are planned for the second release (D5.2).

R2.1.1 The analytics of the platform SHOULD be able to scale with respect to the number of

data sources, the volume and the velocity of data streams.
✓

TCAM_S5 The implementation of the TCAM subcomponent relies on the most widely used, open-

source processing engine for big data, thus ensuring horizontal and vertical scalability

by design.

R2.1.2 The analytics components of the platform SHOULD be able to deal with the

computational and memory limitations posed by large datasets.
✓

TCAM_S6 The technical implementation of TCAM is based on a distributed machine learning

framework that is not limited to the computational or memory constraints of a single

machine.

R2.2.1 PALANTIR deploys various big data analytics frameworks that have demands in

computational power. They MUST be regularly evaluated during development, such

that they are shown to be accurate with real-time data.

✓

TCAM_S7 The current TCAM release implements feature engineering functionalities using

rolling window statistics on streaming (timeseries) data to improve model accuracy.

The preliminary evaluation on benchmark datasets (Section 4) confirms accurate

inference on real-time data.

R2.2.2 PALANTIR SHOULD outperform existing conventional methods from potential

competitors.
--

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 36 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

TCAM_S8 Fulfilment of this requirement premises an integrated PALANTIR platform. It will

therefore be addressed in the final release of the Hybrid Threat Intelligence framework

(D5.2).

R2.2.3 The time to discover critical info & alerts in the security dashboard MUST NOT

exceed 1 minute.
✓

TCAM_S9 The inference time of the currently developed TCAM module measured on regular data

streams of benchmark datasets does not exceed 10 seconds.

R2.2.7 The platform MUST showcase a reduction of false positives and negatives of at least

15% compared to commercial solutions.
--

TCAM_S10 Fulfilment of this requirement premises an integrated PALANTIR platform. It will

therefore be addressed in the final release of the Hybrid Threat Intelligence framework

(D5.2).

R2.6.2 The PALANTIR modularity level SHOULD allow enough independence of all

modules so as if any module needs to be replaced, this has no consequences to the

other modules.

✓

TCAM_S11 Additional threat classification modules can be added to TCAM in order to improve

threat detection accuracy, with no consequences to the operational lifecycle of the

existing ones. The current module (Random Forest) is itself an ensemble of several

independent predictors (decision tree classifiers).

R2.7.5 PALANTIR SHOULD reuse existing open-source software and tools, where it is

appropriate and possible according to the licence.
✓

TCAM_S12 TCAM relies solely on open-source software and distributed machine learning

frameworks.

R2.7.6 The architecture of PALANTIR MUST be open, extensible, providing the ability to

add new functional components.
✓

TCAM_S13 TCAM supports the addition of complementary ML-based detection modules that

focus on the analysis of different data modalities (e.g., netflow, syslog).

3.4. Recommendation and Remediation

Table 4 Specifications of the RR subcomponent

Req. ID Requirement description

R
R

su
b

co
m

p

o
n

en
t

R1.1.3 The platform MUST provide near-real-time (NRT) data processing functionalities. ✓*

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 37 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

RR_S1 Remediating threat scenarios is a crucial task. Therefore, the RR tool needs to be fast in

identifying the recipes to choose from and determining the actions that need to be

enforced in order to mitigate the risks posed by the identified threats. However, Real-

Time reactions are not needed also because this tool requires the administrators in the

loop to make decisions and confirm choices. The current evaluation did not highlight

potential issues in reaching NRT data processing.

R1.3.29 The platform SHOULD prevent and react against Ransomware attacks --

RR_S1 The RR tool has only been tested against the botnet scenario proposed by the Use Cases.

Ransomware is definitely a case the RR tool will deal with in a future version.

R1.5.4 The platform SHALL be able to analyse an attack report to produce an ordered set

of suggested actions (e.g., VNFs configuration) to mitigate the attack
✓

RR_S1 The RR tool has been designed explicitly to meet this goal. At the current stage of

development, it already meets this requirement for selected threat scenarios and will

cover more scenarios in the future versions.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 38 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

4. Implementation

This section covers the implementation details of the different subcomponents introduced in previous

sections. The logic and technologies are all explained in the following subsections, mirroring the

structure of Section 2. The code for each subcomponent for this first release of the Hybrid Threat

Intelligence framework is available at the following repositories: DCP [9], MAD [10], TCAM [11], RR

[12].

4.1. Distributed Collection and Data Preprocessing

4.1.1. Implementation details

The Distributed Collection and Data Preprocessing (DCP) subcomponent has been designed and

developed in such way, that all of its modules can be deployed either dockerized (i.e., in a Kubernetes

cluster) or non-dockerized. Figure 18shows the dockerized architecture of DCP subcomponent. Apache

Kafka [13] has been selected as PALANTIR’s message bus.

Figure 18: The entire pipeline schema for Distributed Collection and Data Preprocessing mechanism

The Collector module, which is responsible for collecting forwarded binary netflows, uses the nfcapd

tool to capture these netflows and save them to nfcapd files. Also, a Python service is developed for

sending the nfcapd files into the available connectors, which will ingest them to Kafka. This service

makes an HTTP request in the registry module every time that a new nfcapd file is created. The Registry

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 39 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

will send a response with the next available connector. Finally, the Collector will try to send the nfcapd

file in this connector along with its filename.

For the implementation of the Registry module, a Python service and a Python API have been

developed. The developed service is a health check service. It pings all registered connectors to check

if they are still online. If it gets an error response or no response at all from a connector, the registry

removes this connector from the list of the available connectors. The provided API has been

implemented using the Flask library[14], and is used by all the connectors to be registered, unregistered,

or updated. Also, it is used by the collector when it searches for the next available connector.

Developed Source Connectors are submodules of the data collection module. They have been designed

and implemented on top of the Kafka Connect API. Kafka Connect is an API, which is used to ingest

data to Kafka from other sources, or to fetch data from Kafka and ingest them to other sources. It also

supports distributed deployment of Kafka connectors. Source connectors are designed to ingest data

from different sources into Kafka. The developed source connectors for netflow data consist of three

different parts, which are shown in Figure 19. As depicted in it, the collector module looks for new

nfcapd files and distributes them among all available netflow source connectors. If the source connectors

are running dockerized or if they are running in separate machines (either physical or virtual), the

netflows will not be forwarded to a separate folder as shown in the image, but they will be sent over

HTTP using their connectors’ API. If all connectors run in the same machine, the collector module can

distribute the collected nfcapd files in separate directories (one for each connector).

Figure 19: Architecture of designed source connectors for netflow data

The first part is an API, developed using Python and Flask, which can be used for communication with

the registry and for receiving files from the Collector module. The second is a service, named

FileWatcher Service, which monitors a directory for new CSV files with netflow records (a similar

service is deployed for syslog data). FileWatcher emits events every time a new CSV file is detected, so

that all registered listeners know about this. Finally, there is the SourceTask which is responsible for

ingesting the csv files into Kafka. It reads them line by line and creates a Kafka record for each line.

SourceTask knows about the new CSV files because it is a registered listener in FileWatcher’s events.

Both FileWatcher Service and Source Task have been implemented in Java following the observer

pattern. SourceTask also follows the Kafka Connect architecture implementing the provided API. As it

is shown in the figure above, the observer in this case is SourceTask.

Sink Connectors are also submodules of the data collection module. They have also designed and

implemented using Kafka Connect API. These connectors had also been developed in the Java

programming language. This type of connectors is used to fetch data from Kafka and forward it to

another destination. For storage of Data Collection and Preprocessing, Elasticsearch [15] has been

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 40 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

selected. The developed sink connectors retrieve netflow records as Kafka messages, converts them to

appropriate JSON format, and finally, they send them to deployed Elasticsearch.

The Data anonymization module consists of three submodules.

Firstly, the application service which is anonymizing/ de-anonymizing IP addresses. This application

has two core functions. As mentioned before, it is both anonymizing an IP address, given an original

IP address to return its obfuscated version and de-anonymizing an IP address, given an obfuscated IP

address to return its original version. Furthermore, the application features the following elements:

- Usage of Crypto-PAn algorithm for anonymization which anonymizes IP address keeping subnet

structure.

- Implementation of a REST-ful anonymization service.

• (De-)/Anonymize IP addresses making POST requests.

• Usage of Go programming language, due to its good concurrency, using goroutines.

- Measurement of the delay time. It measures the time needed until the anonymization function ends. It

starts measuring the time, when the POST HTTP request is received from Spark (data preprocessing

module) until the anonymization and the insertion of the obfuscated IP have been completed. The time

elapsed is also, included in the response of the API, along with the original and the obfuscated IP

addresses.

- A Redis database where the data is stored. The usage of the Redis database is to keep a mapping

between original & obfuscated IP addresses. The advantages of this selection are that it runs in-memory,

which is extremely fast, and it persists the data. The last one is the Redis Insight web application. This

GUI provides an intuitive Redis admin GUI and helps optimize the usage of Redis in our application.

The Data preprocessing module is responsible for fetching raw data from Kafka, preprocessing them

with some defined functions and then sending the preprocessed data back to Kafka. This module and its

preprocessing functions have been developed as Spark [16] functions. The communication with Kafka

for both reading and writing messages has been achieved using Spark Streaming and, more specifically

Structured Streaming. All Spark preprocessing functions have been written in Scala.

For the netflow case, data anonymization can also be considered as a preprocessing function, but it takes

place in another module, the data anonymization module. However, the data preprocessing module is

the one that initiates the anonymization function and waits for its result using HTTP requests. For this

reason, a list with all IP addresses that need to be anonymized must be provided during the startup of

this module. IP addresses in this list can be included using three different ways: i) specific IP addresses

can be provided, ii) a subnet (with its network mask) can be defined and iii) ranges of IP addresses can

also be included (only ranges with subnet mask /24 can be recognized). The results of this module are

three different preprocessed outputs, that will be pushed in three separate Kafka topics. The first one

includes the preprocessed data without applying anonymization function. The second output includes

the raw data after the application of the anonymization function. Finally, the third output contains the

preprocessed data with anonymization function applied to them. The sink connectors of data collection

module will consume the third output, in order to ingest them to Elasticsearch. For the syslog case, the

log parsing and TF-IDF operations mentioned in Section 2.3.1 are written in Python using the PySpark

library.

The Data storage layer is used to store not only the raw netflow data but also the preprocessed ones. It

is deployed to an OpenDistro for ElasticSearch server among with a core app of the suite, Kibana.

Elasticsearch is a highly scalable open-source full-text search and analytics engine. It allows storing,

searching, and analyzing big volumes of data quickly and in near real time. Moreover, Kibana is utilized

to visualize the data from Elasticsearch data and to navigate the Elastic Stack.

4.1.2. Preliminary Evaluation

A number of preliminary benchmarks have been run in order to evaluate the performance of the

developed DCP modules. A benchmark mode has been designed for each module. When this mode is

enabled, these modules will store relevant information and timestamps about the retrieved netflows in a

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 41 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

text file during each phase of the ingestion and preprocessing pipeline. More specifically, two different

benchmarks are designed, one that includes preprocessing & anonymization of the netflow data and a

second one that does not include preprocessing or anonymization.

In order to run the aforementioned benchmarks, one Kafka broker has been used, meaning that all topics

will have only one partition, a Spark deployed in Kubernetes cluster with one executor for the data

preprocessing module, one instance of netflow source connector and netflow sink connector. The

Intrusion Detection Evaluation Dataset (CIC-IDS2017) [17] was selected to simulate one hour of

ingestion of netflows from Day 1 (Monday). Collected netflows will be dumped in nfcapd files every 5

minutes. In total, 535.989 netflow records have been ingested into the pipeline for each benchmark in a

time interval of 60 minutes.

The first benchmark uses all modules of the ingestion pipeline. The raw netflows are collected in nfcapd

files and are forwarded to netflow source connectors. The connectors extract the netflows and ingest

them to Kafka as separate messages. The preprocessing module then fetches the data, applies the defined

preprocessing and anonymization functions and writes the results back to Kafka. Finally, the

preprocessed & anonymized netflows are retrieved from Kafka, they are transformed and finally pushed

to Elasticsearch. The flow of this benchmark, along with the separate points where measurements have

been taken, is shown in Figure 20.

Figure 20: Benchmark with preprocessing flow

For the benchmark that does not involve any preprocessing or anonymization functions, the average

end-to-end delay for a netflow record is 61 seconds. We are also reporting the minimum and the

maximum time needed in order to ingest a netflow end-to-end, which is 5 seconds and 191 seconds

respectively. Finally, we have measured the average time needed from the Crypto-PAn algorithm of the

data anonymization module to anonymize the given IP addresses. The average anonymization time

needed for this algorithm to achieve its goal is 1.56 ms.

An additional benchmark is leveraged to calculate the ingestion time of raw netflows from the time they

are collected until the time they are sent to the storage module. In this benchmark no preprocessing or

anonymization function have been applied. The flow of this benchmark and the capture points are shown

in Figure 21.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 42 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Figure 21: Benchmark without preprocessing flow

For this benchmark, where no preprocessing or anonymization functions are applied, the average end-

to-end delay for a netflow record is 57 seconds. Also, the minimum time needed in order to ingest a

netflow end-to-end is 4 seconds and the maximum time is 183 seconds.

In order to further improve the performance of the developed modules, additional benchmarks are

planned using more instances of the developed modules in order to take advantage of their scalability

and the distributed performance features.

4.2. Multimodal Anomaly Detection

4.2.1. Implementation details

MIDAS

The MIDAS anomaly detection module presented in Section 2.3.2 has been implemented starting from

an open-source version of the algorithm [18]. The implementation has been modified to make it work

in a streaming fashion by directly consuming events from a Kafka topic rather than reading in one batch

the whole dataset. The Kafka topic from which events are read is netflow-anonymized-preprocessed. In

this way, NetFlow events pre-processed and anonymized by the DCP subcomponents are fed into the

MIDAS module. Input events are further processed to extract relevant information such as the endpoints

of the connection and the timing information. The implementation has been ported to a Docker [19]

container which has been tested in the PALANTIR testbed in conjunction with the DCP subcomponent

to verify part of the TI pipeline from the ingestion of raw binary NetFlow data up to the anomaly

detection. The container is based on python:3.8 image [20] part of Docker Official Images and requires

the following Python modules: kafka-python [21], numpy [22] and numba [23] which are all

automatically installed through pip [24] Python package installer during container build.

The anomaly detection algorithm requires defining a threshold against which the anomaly score is

compared to declare whether a network connection is abnormal or not. We configured the threshold as

the 99th percentile of the anomaly score values observed during a training period which is assumed to

be free from anomalies. In the following subsection 4.2.2, we report a preliminary performance

evaluation using a benchmark dataset. The threshold can be adjusted periodically and further

increased/decreased to better tune the tradeoff among false positives (normal flows marked as

anomalies) and false negatives (anomalous flows not marked as anomalies).

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 43 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Benchmark datasets

For the network traffic analytics pipeline, the benchmark USTC-TFC2016 dataset [25] was used to train

the machine learning algorithms. The dataset consists of two parts: Part I contains ten types of malware

traffic from public websites, which were collected from real network environments and Part II contains

ten types of normal traffic which were collected using traffic simulation software that is resembling the

most common network applications.

For the syslog analytics pipeline, an open-source benchmark dataset (AIT Log Data Set V1.1 [26]) was

utilized to train anomaly detection and threat classification models. The dataset contains synthetic log

data suitable for the evaluation of intrusion detection systems collected from four independent testbeds.

For the purposes of PALANTIR, a subset of sequential execution of multi-step attacks with sequential

execution of the following attacks launched against web servers (e.g., network mapping, brute-force

attacks and vulnerability scans using hydra and nikto tools, web shell attacks, etc.) was selected.

Additionally, prior to training, the TF-IDF vectorizer of the scikit-learn Python library [27] was used to

convert textual (system) logs to their numerical representations. Stop-word removal and lower-case

conversion was applied to the logs, while dimensionality reduction of the 145 features ordered by term

frequency across the corpus was necessary to create a denser representation of the processed logs.

Autoencoder

The prototype versions of Autoencoder variants trained under the scope of MAD module use the Keras

framework of TensorFlow on Python [28]. The common model specifications in both cases include the

Leaky ReLU activation function [29], batch normalization using a batch size of 512, a latent vector size

of 25% the original dimensions and the Adam optimizer [30]. Both models were trained for 60000

iterations. The following hyperparameters were specific to each model:

Autoencoder’s learning rate is set equal to 0.002 and a Mean Squared Error loss is used. The Encoder

consists of 3 layers having 128, 64 and 32 neurons respectively. The latent vector is of size 21 while the

Decoder consists of 3 layers with 32, 64 and 128 neurons.

GANomaly

GANomaly’s learning rate is set equal to 0.0002 for both the Generator and the Discriminator. The

Encoders and Decoders have the same architecture as the ones used for the Autoencoder, described

above. For the Discriminator labels, one-sided label smoothing of value 0.9 for the reconstructed inputs

given by the output of the Generator is utilized, in order to prevent overconfidence of the Discriminator.

However, a balancing scheme for training the Generator and Discriminator is not implemented and they

are both trained equally.

Isolation Forest

MAD’s IsolationForest algorithm is trained using the scikit-learn Python framework [27]. A

hyperparameter search is leveraged to determine the optimal values for the decision trees comprising

the forest (10 estimators) and the percentage of samples utilized by each tree (85% of the dataset). Each

tree utilizes the full set of the available features.

4.2.2. Preliminary Evaluation

MIDAS

The performance of MIDAS has been evaluated using CIC-IDS2017 dataset [17], an Intrusion Detection

benchmark dataset containing a mix of benign and common network attacks. The dataset includes traffic

covering five consecutive days from Monday to Friday measured on a testbed infrastructure and includes

2.700.000 connections of which more than 500.000 are anomalous. Monday is the only day that contains

normal traffic, while the remaining days contain both normal traffic and malign traffic including the

following types of attack: Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration,

Botnet and DDoS.

MIDAS’ internal parameters (e.g., the size of the CountMinSketch (CMS) data structures and the

temporal decay factors) have been set to the same values reported in the original paper, i.e., using CMS

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 44 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

with 2 hash functions and 1024 buckets, a temporal decay factor ɑ=0.5 and a conditional merge threshold

ε=1000. The size of MIDAS time slot has been set to 1 minute because the dataset does not provide a

finer time granularity. We fed traffic data from Tuesday to Friday into MIDAS and computed the

anomaly score of all the flows. The average processing rate is 222k flows/sec. By using scikit-learn

Python library we computed the ROC-AUC=0.9925 and average Precision=0.9845. The Receiver

Operating Characteristic (ROC) curve captures the TPR-FPR (the definition of TPR and FPR is reported

below) tradeoff at different classification thresholds. ROC-AUC is the area under the ROC curve and

provides an aggregate measure to quantify the performance of a classification model across all the

classification thresholds. The Precision quantifies the quota of positive class predictions that actually

belong to the positive class (i.e., quota of reported anomalies that are actually anomalous flows).

These two metrics are threshold-independent, and in order to obtain a concrete implementation and to

investigate the misclassified flows, a specific value of the anomaly detection threshold must be defined.

We computed two possible values based on the 99th and 99.999th percentile of the anomaly scores

resulting from feeding into MIDAS the traffic data from Monday (which is known to be free from

anomalies). The following Figure 22 reports the anomaly score of all the flows (split into train and test

set) and the two thresholds computed on the train set portion as two horizontal lines.

Figure 22: Anomaly scores of individual flows in CIC-IDS2017 dataset computed by MIDAS

For each one of the two thresholds, the following table reports additional performance metrics, namely:

• True Positives (TP): number of positive samples (i.e. anomalies) correctly detected as anomalies

• False Positives (FP): number of negative samples (i.e. normal flows) wrongly detected as

anomalies

• True Negatives (TN): number of negative samples (i.e. normal flows) correctly marked as not

anomalous

• False Negatives (FN): number of positive samples (i.e. anomalies) wrongly marked as not

anomalous

• Accuracy: computed as (TP+TN)/(TP+TN+FP+FN), it quantifies the percentage of correct

predictions

• Precision: computed as TP/(TP+FP), it quantifies the quota of positive class predictions that

actually belong to the positive class

• Recall or True Positve Rate (TPR): computed as TP/(TP+FN), it quantifies the quota of positive

samples that are correctly predicted as positive

• False Positive Rate (FPR): computed as FP/(FP+TN), it quantifies the quota of positive samples

that are wrongly predicted as negative

• F1-score: computed as 2TP/(2TP+FP+FN), it is the harmonic mean of Precision and Recall

Table 5: MIDAS performance on CIC-IDS2017 for a couple of threshold values

99-th threshold = 5.91*104 99.999-th threshold = 8.75*105

TP = 552077
FP = 170806
FN = 1572373
TN = 5569

TP = 534348
FP = 86611
TN = 1656568
FN = 23298

Accuracy = 0.9233 Accuracy = 0.9522

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 45 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Precision = 0.7637
Recall [TPR] = 0.9900
FPR = 0.0980
F1-score = 0.8623

Precision = 0.8605
Recall [TPR] = 0.9582
FPR = 0.0497
F1-score = 0.9067

As expected, a higher value of the threshold (i.e., 8.75*105) provides a much lower number of FP at the

cost of a reduced number of TP. Even if MIDAS is part of MAD and does not consider the specific

labels of the anomalous flows, given that CIC-IDS2017 is a labelled dataset, we can a posteriori

investigate its performance split by the specific type of attacks. The following Table 4 confirms that

MIDAS, thanks to its ability to consider both temporal and spatial relations across network flows, works

particularly well for (D)DoS and Port Scan. "Missed quota" column reports the % of flows undetected

for each attack type, i.e., the misclassified negative samples ("FN" column) over the total number of

flows ("Tot flows" column). Attack types colored in green (yellow) refer to attacks for which no more

than 10% (50%) of flows have been misclassified. Red ones are the ones for which more than half of

the flows have been missed as anomalies. Again, considering a higher value of the threshold (moving

from the left side of the table to the right one) on one side reduces the FP (as shown in the previous

table), but on the other side, it also decreases the TP, i.e., the number of FN increases.

Table 6: MIDAS performance on CIC-IDS2017 split by type of attack

AD threshold = 5.91*104

AD threshold = 8.75*105

FN Tot

flows

Missed

quota

 FN Tot

flows

Missed

quota

Web Attack –

Brute Force

1507 1507 1.0000 FTP-Patator 7938 7938 1.0000

Web Attack – XSS 652 652 1.0000 SSH-Patator 5897 5897 1.0000

Web Attack – Sql

Injection

21 21 1.0000 Bot 1966 1966 1.0000

Heartbleed 11 11 1.0000 Web Attack –

Brute Force

1507 1507 1.0000

Bot 1961 1966 0.9974 Web Attack – XSS 652 652 1.0000

Infiltration 17 36 0.4722 Web Attack – Sql

Injection

21 21 1.0000

SSH-Patator 245 5897 0.0415 Heartbleed 11 11 1.0000

FTP-Patator 123 7938 0.0154 Infiltration 33 36 0.9166

DoS slowloris 84 5796 0.0144 DoS slowloris 1430 5796 0.2467

DoS Slowhttptest 75 5499 0.0136 DoS Slowhttptest 1309 5499 0.2380

DoS GoldenEye 47 10293 0.0045 DoS GoldenEye 312 10293 0.0303

PortScan 662 158930 0.0041 PortScan 1524 158930 0.0095

DdoS 101 128027 0.0007 DdoS 388 128027 0.0030

DoS Hulk 63 231073 0.0002 DoS Hulk 310 231073 0.0013

The high number of FP can be reduced by further fine-tuning the MIDAS internal parameters. E.g., by

doubling the number of buckets from 1024 to 2048, we obtained ROC-AUC=0.9933 and average

Precision=0.9841. When using the two 99th and 99.999th percentiles to define a couple of threshold

values, as reported in the table below, we observed a highly reduced FP (and thus FPR). The price to

pay is a reduced average processing rate of 128k flows/sec and the doubling of the memory

requirements.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 46 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Table 7: MIDAS performance on CIC-IDS2017 fine-tuning example

99-th threshold = 1.63*105 99.999-th threshold = 2.12*107

TP = 546945

FP = 136972
TN = 1606207

FN = 10701

TP = 513330

FP = 3886
TN = 1739293

FN = 44316

Accuracy = 0.9358
Precision = 0.7997
Recall [TPR] = 0.9808

FPR = 0.0786

F1-score = 0.8811

Accuracy = 0.9791
Precision = 0.9925
Recall [TPR] = 0.9205

FPR = 0.0022

F1-score = 0.9552

As a final remark, it should also be noted that the output of the MAD subcomponents still has to be

processed by the following TCAM subcomponent whose task is further reducing the FP when trying to

classify the specific type of threat associated with the anomalies.

Autoencoder

The anomaly detection capabilities of the Autoencoder variant for the network traffic case are illustrated

below on the CIC-IDS2017 Bot test set for three different decision boundaries. It should be highlighted

that these results are only relevant for the botnet attacks, which corresponds to one of the most complex

ones in terms of detection. The decision boundaries were drawn by accepting various percentages of the

normal data as false positives. All results represent the highest overall precision across the three decision

boundaries.

Decision

Boundary
Autoencoder

Precision
FPs

0.001% 0.75 3

0.006% 0.54 13

0.0011% 0.44 16

Figure 23: Results of the Autoencoder anomaly detection algorithm on the CIC-IDS2017 Bot test set

An interpretation of the above results is as follows: When accepting that 0.001% of normal traffic can

be predicted as malicious, we get a decision boundary that contains that percentage of normal traffic on

the wrong side of it. For that decision boundary, we get a precision of 0.75 from the Autoencoder,

meaning 75% of the traffic labelled as malicious is indeed botnet traffic. We also present the underlying

measurements of true positives and false positives for the same decision boundaries. While the

Autoencoder has been able to detect some of the botnet occurrences, it cannot clearly separate between

every instance of botnet and benign traffic.

GANomaly

Similarly, we have tested GANomaly on the same CIC-IDS2017 Bot test set for three different decision

boundaries achieving significantly better results:

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 47 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Decision

Boundary
Autoencoder

Precision
FPs

0.001% 0.92 11

0.006% 0.65 20

0.0011% 0.58 28

Figure 24: Results of the GANomaly anomaly detection algorithm on the CIC-IDS2017 Bot test set

As shown in Figure 24, both numerically and visually, GANomaly’s performance surpasses that of the

previous methods, being able to offer a precision-oriented solution for botnet detection purposes. It is

apparent that GANomaly results in a more confident data distribution since the blue points, representing

normal traffic, have an anomaly score that is on average closer to zero compared to their reconstruction

error when passed through the Autoencoder. It can also be observed that the red points, representing

malicious traffic, achieve better separation from the blue points with GANomaly, which is caused by a

better modelling of the data distribution, making outliers stand out more.

The anomaly detection capabilities of the GANomaly variant for the network traffic case are also

illustrated in Figure 25 using the USTC-TFC2016 test set. It can be easily observed that a clear

separability between the benign and botnet classes exists, as a result of the difference between the

produced reconstruction between the two different types of Netflow logs. This indicates that the model

has learned the underlying patterns of normal traffic and is capable of reconstructing it, contrary to

malicious (botnet) logs for which the model has no knowledge of, and therefore cannot recreate.

Figure 25: Results of the GANomaly anomaly detection algorithm on the USTC-TFC2016 test set

Isolation Forest on the syslog case

Similar to the network traffic case, the goal with regard to the system logs is to distinguish between

benign and malicious behaviour. To this end, the separability between normal/benign and

suspicious/botnet system logs is depicted in Figure 26 (for IsolationForest, highlighting the efficiency

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 48 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

of the aforementioned preprocessing and analytics operations). The figure is based on the AIT Log Data

test set.

Figure 26: Results of the Isolation Forest anomaly detection algorithm on the AIT Log Data test set

4.3. Threat Classification and Alarm Management

4.3.1. Implementation details

For the purposes of the TCAM module, RandomForest classifiers were trained for both network traffic

and system log analytics pipelines. RandomForest classifiers are trained using the scikit-learn Python

framework [27].

Regarding the former case, a hyperparameter search is leveraged to determine the optimal values for the

decision trees comprising the forest (161 estimators) and the minimum number of features considered

by each tree when splitting a node (9 samples). A random subset with the size of the square root of the

available features is used for each tree classifier, while the number of samples used to fit each decision

tree is set as half of the available data to avoid overfitting.

Similar to the previous case, a hyperparameter search was leveraged to determine the optimal values for

the decision trees comprising the forest (17 estimators), the minimum number of features considered by

each tree when splitting a node (443 samples) and the minimum number of samples required per leaf

(12 samples) to increase regularisation. A random subset with the size of the square root of the available

features was used for each tree classifier, while the number of samples used to fit each decision tree was

set as half of the available data.

4.3.1. Preliminary Evaluation

The classification results using RandomForest on the USTC-TFC2016 test set along with the importance

of each feature involved in the classification process, are depicted in Figure 27. It is evident that the

algorithm is capable of distinguishing between the different attack and benign traffic classes with high

confidence.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 49 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Figure 27: Classification accuracy and feature importance of RandomForest on USTC-TFC2016 test

set for the netflow case

In a similar fashion to the netflow case, a benchmark was designed for the syslog case based on the test

set of the AIT Log data. Given that the dataset is highly imbalanced (i.e., not all classes are equally

represented) the test set only contained 3 types of labels: Label_0 which corresponds to benign logs,

Label_1 and Label_2 that refer to hydra-ssh and nikto attacks respectively.

Figure 28: Classification accuracy and feature importance of RandomForest on AIT Log data test set

for the syslog case

It should be noted that -after the successful training and testing of the aforementioned prototypes-

production-level versions of the aforementioned anomaly detection and threat classification models

were developed using the Spark v3.2 distributed ML framework [31] using the same hyperparameters.

4.4. Recommendation and Remediation

4.4.1. Implementation details

The Recommendation and Remediation tool presented in Section 2.3.4 has been developed as a set of

Python 3.11 scripts. It has been designed in a modular fashion to ease the development of new features

and the integration of new Enrichment Modules. Moreover, it has been designed to be called with an

API and to be easily exported as a service.

More details on the current implementation of its modules are described below.

• Input Analyser. This module uses standard Python libraries to read, parse and store into the KB

the TCAM outputs.

• Recipe Filter. This module uses standard Python libraries to query the RR Recipe DB. Both the

Applicability report and the Applicable Recipes List are presented to the user as files.

Label Classification

Accuracy

Label_0 (benign traffic) 0.9998

Label_1 (hydra_ssh) 0.9399

Label_2 (nikto scan) 0.8943

Overall test set 0.9933

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 50 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

• Knowledge Base. This database is implemented as a Python dictionary in the current version.

Persistence is achieved by storing the dictionary as a JSON file. Even if it is unnecessary for

this version of the prototype, the following versions of the KB will use more structured

databases. We are investigating the use of JSON document databases (e.g., MongoDB).

• RR Recipe Database. This database contains a set of abstract recipes, i.e., sequences of

remediation actions, written in a high-level custom language. It is implemented as a Python

dictionary in the current version. Persistence is achieved by storing the dictionary as a JSON

file. More structured database technologies are under investigation (e.g., traditional SQL,

noSQL, and JSON document databases), but they have been evaluated as superfluous in the

current stage and for the near future.

• Recipe Instruction Interpreter. This module works as an interpreter of the recipe descriptions.

The interpreter is based on the Natural Language ToolKit (nltk) Python package [32], one of

the most used frameworks to handle human language data. Furthermore, its functionalities are

extended by means of Enrichment Modules. The RII Enrichment Modules currently available

are described below.

▪ The Landscape Analysis uses the igraph Python package [33], one of the most widely

employed packages, for managing the graph that describes the network topology.

▪ On the other hand, the Capability Management Module just uses standard Python

libraries.

• Output Generator. This module reads the KB and produces the RR tool outputs. It does not

employ any external Python package.

The Recommendation and Remediation tool is provided as a Docker container, based on the

python:3.11-rc-bullseye official Docker image [20].

4.4.2. Preliminary Evaluation

We have evaluated the RR tool on the botnet use case, the reference scenario for the WP5. For this

purpose, we have designed

• a target network and described it with the Landscape Description Language;

• a sample Threat Intelligence Report;

• a set of 7 recipes that have been stored in the RR Recipe DB.

The preliminary evaluation of the RR tool indicates that it does not pose any performance constraint.

Also, a preliminary analysis of the complexity of the algorithms only indicates a risk for the computation

of the network paths, which is not considered a significant issue for networks with less than a billion

nodes.

Further performance evaluations are expected in the coming months with larger synthetic networks (to

evaluate the scalability against the landscape complexity and size) and potentially more sophisticated

recipes (which could be developed to address other project use cases).

Finally, a more thorough validation is expected from the use case owners. They will be asked to

• validate the appropriateness and effectiveness of the recipes proposed for all the use cases;

• identify the missing reactions and reaction strategies that may be the starting point for defining

new recipes;

• the correctness of the deployment of the proposed recipes, both in terms of changes imposed to

the target network and changes to the configurations of the security capabilities involved.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 51 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

5. Conclusions

This deliverable provided the initial detailed view on the architecture, low-level design and

specifications of the subcomponents belonging to the Hybrid Threat Intelligence framework,

constituting the core line of work in WP5.

The information provided is the current, up-to-date architecture and design for each subcomponent and

corresponding module(s). This design encompasses everything from the internal separation of logic

concerns to the interactions between modules, as well as the structure of the top-level components of

the PALANTIR platform. All of these specifications and designs create the path for each of them to be

developed. The work of this deliverable will have an influence on future talks about integrations with

other components.

Aside from the design, this deliverable contains low-level, development-related details in the form of

technical specifications (mapped from the general requirements introduced in D2.1), that can be used as

a guideline to monitor the progress of the technical activities of WP5. Finally, this deliverable covers

the implementation details for each subcomponent, showcasing the selection of technologies, open-

source tools and frameworks and illustrating their intended functionality with the help of preliminary

evaluations.

In our efforts to provide a richer representation of the threat landscape that closely resembles human

decision making, we envision the analysis of multimodal data types as a core functionality of the final

PALANTIR release. Following up on the advances made by WP5 partners (UPM, TID) in other Horizon

2020 projects (i.e., 5GROWTH [34] and 5G-CLARITY [35]), there are plans to introduce additional

data aggregation features to the Threat Intelligence component, namely the Semantic Data Aggregator

(SDA). The SDA is a semantic, model-driven monitoring framework that enables data collection, data

transformation, and data aggregation from different monitoring elements, and coordinates the flow of

these data among a set of heterogenous data sources and data consumers. By using formal data models,

defined by means of the YANG[36] modelling language, the SDA adapts data collected from the

available sources into the formats suitable for consumers. In the scope of WP5, the SDA is envisioned

as an element extending the capabilities of the DCP subcomponent within the Hybrid Threat Intelligence

framework. In this regard, the definition of a YANG model for NetFlow-based monitoring data has

started. By applying a formal model that is agnostic to the data source, i.e., the NetFlow collector, the

SDA provides interoperability to current and prospective consumers present within PALANTIR

framework, especially the MAD subcomponent of the Hybrid Threat Intelligence framework.

Nevertheless, focus will not limit to NetFlow as more sources and consumers, such as IPFIX, syslog or

network telemetry mechanisms, are in the radar.

As the project enters its second phase, the next steps will mostly focus on integration activities with the

rest of the PALANTIR components and on adapting new functionalities (e.g., SDA), while fulfilling

any requirements that have not yet been met in the implementation phase. Such examples are: the

aggregation of threat findings from complementary analytics-based threat detection modules, the

finetuning and retraining of ML/DL models to address additional attack types relevant to the established

Use Cases, the implementation of standardised alerts as part of the alarm management functionalities to

enable live threat sharing, and the development of additional mitigation policies to make full use of the

currently available or planned SCs. To this end, the existing code in the repositories is expected to be

updated and improved upon in the months to come.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 52 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

6. References

[1] Z. S. Harris, “Distributional Structure,” WORD, 1954, doi: 10.1080/00437956.1954.11659520.

[2] S. Bhatia, B. Hooi, M. Yoon, K. Shin, and C. Faloutsos, “Midas: Microcluster-based detector of

anomalies in edge streams,” 2020, doi: 10.1609/aaai.v34i04.5724.

[3] F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation forest,” 2008, doi: 10.1109/ICDM.2008.17.

[4] O. Kompougias et al., “{IoT} Botnet Detection on Flow Data using Autoencoders,” 2021.

[5] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “GANomaly: Semi-supervised Anomaly

Detection via Adversarial Training,” 2019, doi: 10.1007/978-3-030-20893-6_39.

[6] H. Attak et al., “Application of distributed computing and machine learning technologies to

cybersecurity Application of distributed computing and machine learning technologies to

cybersecurity,” Comput. Electron. Secur. Appl. Rendez-vous (C&ESAR), 19-21 Novemb. 2018,

2018.

[7] P. A. A. Resende and A. C. Drummond, “A survey of random forest based methods for intrusion

detection systems,” ACM Computing Surveys. 2018, doi: 10.1145/3178582.

[8] “SECURED H2020 Project.” https://cordis.europa.eu/project/id/611458.

[9] “Distributed Collection and Data Preprocessing (DCP) Source Code.”

https://github.com/palantir-h2020/ti-dp.

[10] “Multimodal Anomaly Detection (MAD) Source Code.” https://github.com/palantir-h2020/ti-

mmml-ad.

[11] “Threat Classification and Alarm Management (TCAM) Source Code.”

https://github.com/palantir-h2020/ti-mmml-tc.

[12] “Recommendation and Remediation (RR) Source Code.” https://github.com/palantir-h2020/ti-

re.

[13] “Apache Kafka.” https://kafka.apache.org/.

[14] W. framework Flask, “Flask Web Framework,” Flask. 2018.

[15] “Elastic.” https://www.elastic.co/.

[16] “APACHE Spark.” https://spark.apache.org/.

[17] “Intrusion Detection Evaluation Dataset.” https://www.unb.ca/cic/datasets/ids-2017.html.

[18] “MIDAS repository.” https://github.com/Stream-AD/MIDAS.

[19] “docker.” https://www.docker.com/.

[20] “docker for python.” https://hub.docker.com/_/python.

[21] “kafka for python.” https://pypi.org/project/kafka-python/.

[22] “numpy.” https://pypi.org/project/numpy/.

[23] “numba.” https://pypi.org/project/numba/.

[24] “pip - Python package installer.” https://pip.pypa.io/en/stable/.

[25] “USTC-TFC2016 dataset.” https://github.com/yungshenglu/USTC-TFC2016.

[26] L. Max, S. Florian, W. Markus, H. Wolfgang, and R. Andreas, “AIT Log Data Set V1.1.”

Zenodo, 2020, doi: 10.5281/zenodo.4264796.

[27] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., 2011.

[28] F. Chollet, “Keras,” J. Chem. Inf. Model., 2013.

[29] V. Nair and G. E. Hinton, “Rectified linear units improve Restricted Boltzmann machines,” 2010.

[30] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 2015.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 53 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

[31] X. Meng et al., “MLlib: Machine learning in Apache Spark,” J. Mach. Learn. Res., 2016.

[32] “NLTK.” https://www.nltk.org/.

[33] “igraph.” https://igraph.org/.

[34] “5G-GROWTH 5G-enabled Growth in Vertical Industries H2020 project.” https://5growth.eu/.

[35] “5G-CLARITY EC H2020 5G Infrastructure PPP Phase 3 Project.” https://www.5gclarity.com/.

[36] “YANG Modelling Language.” http://www.yang-central.org.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 54 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

7. Annex

7.1. Annex A: Interfaces of the Threat Intelligence subcomponents

Table 8: DCP_DC_001 interface specification

METHOD SPECIFICATION

Interface ID DCP_DC_001

Interface Point Collector

Interface Name Binary Netflow Collection

Description This interface is deployed on Collector in order to collect binary

netflow data forwarded from infrastructure’s network devices

Data Source Network devices

Data Destination Collector

Data Volume Forwarded netflows in binary format from network devices

Implementation Mechanism The interface is deployed in Collector using the nfcapd tool

Syntax N/A

Pre-condition N/A

Post-condition Collected netflows will be dumped in nfcapd files

Table 9: KAFKA_001 interface specification

METHOD SPECIFICATION

Interface ID KAFKA_001

Interface Point Kafka

Interface Name Kafka topic for anonymized & pre-processed netflow data

Description This interface exists as a Kafka topic, where anonymized & pre-

processed netflow records are ingested. Both anonymization and

pre-processing functions have been applied to these records

Data Source Data Preprocessing module (DP)

Data Destination Kafka, Data Collection and Data Preprocessing subcomponent

(DPC), Multimodal Anomaly Detection subcomponent (MAD),

Threat Classification and Alarm Management (TCAM)

Data Volume Netflow records in CSV format, separated by comma, as they are

transformed after application of anonymization & pre-processing

functions

Implementation Mechanism The interface is implemented as a Kafka topic

Syntax netflow-anonymized-preprocessed

Record schema (CSV):

ts, te, td, sa, da, sp, dp, pr, flg, fwd, stos, ipkt, ibyt, opkt, obyt, in,

out, sas, das, smk, dmk, dtos, dir, nh, nhb, svln, dvln, ismc, odmc,

idmc, osmc, mpls1, mpls2, mpls3, mpls4, mpls5, mpls6, mpls7,

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 55 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

mpls8, mpls9, mpls10, cl, sl, al, ra, eng, exid, tr, tpkt, tbyt, cp,

prtcp, prudp, pricmp, prigmp, prother, flga, flgs, flgf, flgr, flgp,

flgu

Column names are explained in Table 24 in Annex

Pre-condition Consumers must be registered in the specified Kafka topic

Post-condition Consumers will fetch Kafka messages with the schema, described

above, that will contain netflow records that are both anonymized

& pre-processed

Table 10: DCP_DC_002 interface specification

METHOD SPECIFICATION

Interface ID DCP_DC_002

Interface Point Registry service.

Interface Name Register Kafka Source Connector.

Description This endpoint exists in the Registry service, in order to add a

newly deployed Kafka Source Connector for netflow data.

Data Source Kafka Source Connector for netflow data.

Data Destination Registry Service.

Data Volume The name and url of the new Kafka Source Connector must be

provided.

Implementation Mechanism The interface is implemented as a REST API endpoint.

Syntax /register

Body schema (JSON):

{

name: string,

url: string

}

The method can be requested under 1 condition:

POST request with provided body

Pre-condition

Post-condition A JSON response with status code 200 and a success message

will return if everything works fine. Otherwise, if any error

occurred a JSON response with status code 400 and an error

message will be returned.

Table 11: DCP_DC_003 interface specification

METHOD SPECIFICATION

Interface ID DCP_DC_003

Interface Point Registry service.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 56 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Interface Name Unregister Kafka Source Connector.

Description This endpoint exists in the Registry service, in order to delete an

existing Kafka Source Connector for netflow data.

Data Source Kafka Source Connector for netflow data.

Data Destination Registry Service.

Data Volume The name of an existing Kafka Source Connector must be

provided.

Implementation Mechanism The interface is implemented as a REST API endpoint.

Syntax /unregister

Body schema (JSON):

{

name: string

}

The method can be requested under 1 condition:

POST request with provided body

Pre-condition

Post-condition A JSON response with status code 200 and a success message

will return if everything works fine. Otherwise, if any error

occurred a JSON response with status code 400 and an error

message will be returned.

Table 12: DCP_DC_004 interface specification

METHOD SPECIFICATION

Interface ID DCP_DC_004

Interface Point Registry service.

Interface Name Update a record of an existing Kafka Source Connector.

Description This endpoint exists in the Registry service, in order to update an

existing Kafka Source Connector for netflow data.

Data Source Kafka Source Connector for netflow data.

Data Destination Registry Service.

Data Volume The name and the updated url of an existing Kafka Source

Connector must be provided.

Implementation Mechanism The interface is implemented as a REST API endpoint.

Syntax /update

Body schema (JSON):

{

name: string,

url: string

}

The method can be requested under 1 condition:

POST request with provided body

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 57 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Pre-condition

Post-condition A JSON response with status code 200 and a success message

will return if everything works fine. Otherwise, if any error

occurred a JSON response with status code 400 and an error

message will be returned.

Table 13: DCP_DC_005 interface specification

METHOD SPECIFICATION

Interface ID DCP_DC_005

Interface Point Registry service.

Interface Name Get the next available Kafka Source Connector for netflow data.

Description This endpoint exists in Registry service, in order to balance the

load between all available connectors. It returns every time the

next available connector, using round robin distribution.

Data Source Registry Service.

Data Destination Collector.

Data Volume No params or body needs to be provided.

Implementation Mechanism The interface is implemented as a REST API endpoint.

Syntax /target

The method can be requested under 1 condition:

GET request

Pre-condition At least one Kafka Source Connector for netflow data must be

already registered.

Post-condition A JSON response with status code 200, the name and the URL of

a Kafka Source Connector for netflow data and a success message

will return if everything works fine. Otherwise, if any error

occurred a JSON response with status code 400 and an error

message will be returned.

Table 14: DCP_DC_006 interface specification

METHOD SPECIFICATION

Interface ID DCP_DC_006

Interface Point Registry service.

Interface Name Get all available Kafka Source Connectors for netflow data.

Description This endpoint exists in the Registry service, in order to get all

available Kafka Source Connectors for netflow data.

Data Source Registry Service.

Data Destination

Data Volume No params or body needs to be provided.

Implementation Mechanism The interface is implemented as a REST API endpoint.

Syntax /services

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 58 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

The method can be requested under 1 condition:

GET request

Pre-condition

Post-condition A JSON response with status code 200 and a JSON array with all

available connectors will return if everything works fine.

Otherwise, if any error occurred a JSON response with status

code 400 and an error message will be returned.

Table 15: DCP_DC_007 interface specification

METHOD SPECIFICATION

Interface ID DCP_DC_007

Interface Point Kafka Source Connector.

Interface Name Receive nfcapd file for conversion.

Description This endpoint exists in all Kafka Source Connectors for netflow

data. It is responsible for retrieving a nfcapd file and converting

it to .csv format.

Data Source Collector

Data Destination Kafka Source Connector for netflow data.

Data Volume The filename and the binary content of the file must be provided.

Implementation Mechanism The interface is implemented as a REST API endpoint.

Syntax /convert

HTTP Request Parameters:

Filename: string

Body schema (JSON):

{

data: string

}

The method can be requested under 1 condition:

POST request with provided body

Pre-condition

Post-condition A JSON response with status code 200 and a success message

will return if everything works fine. Otherwise, if any error

occurred a JSON response with status code 400 and an error

message will be returned.

Table 16: DCP_DC_008 interface specification

METHOD SPECIFICATION

Interface ID DCP_DC_008

Interface Point Kafka Source Connector.

Interface Name Ping the connector.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 59 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Description This endpoint exists in a Kafka Source Connector for health

check purposes.

Data Source Registry

Data Destination Kafka Source Connector.

Data Volume No params or body need to be provided.

Implementation Mechanism The interface is implemented as a REST API endpoint.

Syntax /ping

The method can be requested under 1 condition:

GET request

Pre-condition

Post-condition A JSON response with status code 200 and a success message

will return if everything works fine. Otherwise, if any error

occurred a JSON response with status code 400 and an error

message will be returned.

Table 17: DCP_AS_001 interface specification

METHOD SPECIFICATION

Interface ID DCP_AS_001

Interface Point Anonymization Service.

Interface Name Anonymize an IP address.

Description This endpoint exists in Anonymization Service, to anonymize

given IP addresses.

Data Source Data Preprocessing module (DP)

Data Destination Anonymization Service.

Data Volume The IP address to be anonymized.

Implementation Mechanism The interface is implemented as a REST API endpoint.

Syntax /anonymize

Body schema (JSON):

{

IpAddr: string

}

The method can be requested under 1 condition:

POST request with provided body

Pre-condition

Post-condition A JSON response with status code 200, a success message, the

original and the obfuscated IP addresses and the time needed for

execution (in seconds) will return if everything works fine.

Otherwise, if any error occurred a JSON response with status

code 400 and an error message will be returned.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 60 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Table 18: DCP_AS_002 interface specification

METHOD SPECIFICATION

Interface ID DCP_AS_002

Interface Point Anonymization Service.

Interface Name Deanonymize an IP address.

Description This endpoint exists in Anonymization Service, to deanonymize

given obfuscated IP addresses.

Data Source

Data Destination Anonymization Service.

Data Volume The IP address to be de-anonymized.

Implementation Mechanism The interface is implemented as a REST API endpoint.

Syntax /deanonymize

Body schema (JSON):

{

IpAddr: string

}

The method can be requested under 1 condition:

POST request with provided body

Pre-condition The given IP address must be the result of a previous

anonymization function. Otherwise, the original IP cannot be

found in Anonymization Service’s storage.

Post-condition A JSON response with status code 200, a success message, the

original and the obfuscated IP addresses and the time needed for

execution (in seconds) will return if everything works fine.

Otherwise, if any error occurred a JSON response with status

code 400 and an error message will be returned.

Table 19: KAFKA_002 interface specification

METHOD SPECIFICATION

Interface ID KAFKA_002

Interface Point Kafka

Interface Name Kafka topic for raw netflow data.

Description This interface exists as a Kafka topic, where collected raw

netflow records are ingested.

Data Source Kafka Source Connectors for netflow data.

Data Destination Kafka.

Data Volume Netflow records in CSV format, separated by comma, as they are

extracted using nfdump tool.

Implementation Mechanism The interface is implemented as a Kafka topic.

Syntax netflow-raw

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 61 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Record schema (CSV):

ts, te, td, sa, da, sp, dp, pr, flg, fwd, stos, ipkt, ibyt, opkt, obyt, in,

out, sas, das, smk, dmk, dtos, dir, nh, nhb, svln, dvln, ismc, odmc,

idmc, osmc, mpls1, mpls2, mpls3, mpls4, mpls5, mpls6, mpls7,

mpls8, mpls9, mpls10, cl, sl, al, ra, eng, exid, tr

Column names are explained in Table 24 in Annex

Pre-condition Consumers must be registered in the specified Kafka topic.

Post-condition Consumers will fetch Kafka messages with the schema, described

above, that will contain raw netflow records.

Table 20: KAFKA_003 interface specification

METHOD SPECIFICATION

Interface ID KAFKA_003

Interface Point Kafka

Interface Name Kafka topic for anonymized netflow data.

Description This interface exists as a Kafka topic, where collected

anonymized only netflow records are ingested. No pre-processing

function has been applied to these records.

Data Source Data Preprocessing module (DP).

Data Destination Kafka.

Data Volume Netflow records in CSV format, separated by comma, as they are

transformed after anonymization.

Implementation Mechanism The interface is implemented as a Kafka topic.

Syntax netflow- anonymized

Record schema (CSV):

ts, te, td, sa, da, sp, dp, pr, flg, fwd, stos, ipkt, ibyt, opkt, obyt, in,

out, sas, das, smk, dmk, dtos, dir, nh, nhb, svln, dvln, ismc, odmc,

idmc, osmc, mpls1, mpls2, mpls3, mpls4, mpls5, mpls6, mpls7,

mpls8, mpls9, mpls10, cl, sl, al, ra, eng, exid, tr

Column names are explained in Table 24 in Annex

Pre-condition Consumers must be registered in the specified Kafka topic.

Post-condition Consumers will fetch Kafka messages with the schema, described

above, that will contain anonymized only netflow records.

Table 21: KAFKA_004 interface specification

METHOD SPECIFICATION

Interface ID KAFKA_004

Interface Point Kafka.

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 62 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

Interface Name Kafka topic for pre-processed netflow data.

Description This interface exists as a Kafka topic, where pre-processed only

netflow records are ingested. No anonymization has been applied

to the records of this topic.

Data Source Data Preprocessing module (DP)

Data Destination Kafka

Data Volume Netflow records in CSV format, separated by comma, as they are

transformed after application of pre-processing functions.

Implementation Mechanism The interface is implemented as a Kafka topic.

Syntax netflow- preprocessed

Record schema (CSV):

ts, te, td, sa, da, sp, dp, pr, flg, fwd, stos, ipkt, ibyt, opkt, obyt, in,

out, sas, das, smk, dmk, dtos, dir, nh, nhb, svln, dvln, ismc, odmc,

idmc, osmc, mpls1, mpls2, mpls3, mpls4, mpls5, mpls6, mpls7,

mpls8, mpls9, mpls10, cl, sl, al, ra, eng, exid, tr, tpkt, tbyt, cp,

prtcp, prudp, pricmp, prigmp, prother, flga, flgs, flgf, flgr, flgp,

flgu

Column names are explained in Table 24 in Annex

Pre-condition Consumers must be registered in the specified Kafka topic.

Post-condition Consumers will fetch Kafka messages with the schema, described

above, that will contain pre-processed only netflow records.

Table 22: KAFKA_005 interface specification

METHOD SPECIFICATION

Interface ID KAFKA_005

Interface Point Kafka

Interface Name Kafka topic for netflow-based threat findings.

Description This interface exists as a Kafka topic, where the analyzed netflow

assigned with an anomaly score and a threat label are send to

other PALANTIR components for policy recommendation and

visualization purposes.

Data Source Threat Classification and Preprocessing (TCAM)

Data Destination Kafka.

Data Volume Netflow data in JSON format enriched with additional

information derived from MAD and TCAM operations.

Implementation Mechanism The interface is implemented as a Kafka topic.

Syntax threat-findings-netflow

Record schema (JSON):

 {

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 63 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

 "Threat_Finding": {

 "Time_Start": timestamp,

 "Time_End": timestamp,

 "Time_Duration": float,

 "Source_Address": string,

 "Destination_Address": string,

 "Source_Port": integer,

 "Destination_Port": integer,

 "Protocol": string,

 "Flag": string,

 "Soure_tos": integer,

 "Input_packets": integer,

 "Input_bytes": integer

 },

 "Threat_Label": string,

 "Classification_Confidence": float,

 "Outlier_Score": float

 },

Pre-condition Consumers must be registered in the specified Kafka topic.

Post-condition Consumer components (e.g. RR, Portal) must comply with the

above schema to properly parse the output of the analytics

process.

Table 23: KAFKA_006 interface specification

METHOD SPECIFICATION

Interface ID KAFKA_006

Interface Point Kafka

Interface Name Kafka topic for syslog-based threat findings.

Description This interface exists as a Kafka topic, where the analyzed syslog

assigned with an anomaly score and a threat label are send to

other PALANTIR components for policy recommendation and

visualization purposes.

Data Source Threat Classification and Preprocessing (TCAM)

Data Destination Kafka.

Data Volume Syslog data in JSON format enriched with additional information

derived from MAD and TCAM operations.

Implementation Mechanism The interface is implemented as a Kafka topic.

Syntax threat-findings-syslog

Record schema (JSON):

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 64 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

 {

 "Timestamp": timestamp,

 "Hostname": string,

 "PID": integer,

 "Message": string,

 "Threat_Label": string

 "Classification_Confidence": float,

 "Outlier_Score": float

 }

Pre-condition Consumers must be registered in the specified Kafka topic.

Post-condition Consumer components (e.g. RR, Portal) must comply with the

above schema to properly parse the output of the analytics

process.

7.2. Annex B: Data models

Table 24: Netflow schema

Column

Abbreviation

Description Column

Abbreviation

Description

ts Start Time - first seen mpls1 MPLS label 1

te End Time - last seen mpls2 MPLS label 2

td Duration mpls3 MPLS label 3

sa Source Address mpls4 MPLS label 4

da Destination Address mpls5 MPLS label 5

sp Source Port mpls6 MPLS label 6

dp Destination Port mpls7 MPLS label 7

pr Protocol mpls8 MPLS label 8

flg TCP Flags mpls9 MPLS label 9

fwd Forwarding Status mpls10 MPLS label 10

stos Source Tos cl Client latency

ipkt Input Packets sl Server latency

ibyt Input Bytes al Application latency

opkt Output Packets ra Router IP Address

obyt Output Bytes eng Engine Type/ID

in Input Interface num exid Exporter ID

out Output Interface num tr Time the flow was received by the

collector

sas Source AS tpkpt Total flow packets for bidirectional

flows. For unidirectional this value will

be the same as input packets (ipkt).

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page: 65 of 65

Reference: 1.0 Dissemination: PU Version: 1.0 Status: Final

das Destination AS tbyt Total flow bytes for bidirectional flows.

For unidirectional this value will be the

same as input bytes (ibyt).

smk Source mask cp Flag if flow destination port is a port,

used by common services. Values is 1 if

a port is a common port, otherwise it is 0.

Ports of common services: FTP(20,21),

SSH(22), Telnet(23), SMTP(25),

DNS(53), DHCP(67,68), TFTP(69),

HTTP(80), POP3(110), NNTP(119),

NTP(123), IMAP4(143), SNMP(161),

LDAP(389), HTTPS(443), IMAPS(993),

RADIUS(1812), AIM(5190)

dmk Destination mask prtcp TCP Protocol Flag. Values is 1 if

protocol is TCP, 0 otherwise.

dtos Destination Tos prudp UDP Protocol Flag. Values is 1 if

protocol is UDP, 0 otherwise.

dir Direction: ingress,

egress

pricmp ICMP Protocol Flag. Values is 1 if

protocol is ICMP, 0 otherwise.

nh Next-hop IP Address prigmp IGMP Protocol Flag. Values is 1 if

protocol is IGMP, 0 otherwise.

nhb BGP Next-hop IP

Address

prother Other Protocol Flag. Values is 1 if

protocol is not TCP, UDP, ICMP or

IGMP, 0 otherwise.

svln Src vlan label flga TCP Control Flag (A). Value is 1 if TCP

Flag A is in flow's TCP flags.

dvln Dst vlan label flgs TCP Control Flag (S). Value is 1 if TCP

Flag S is in flow's TCP flags.

ismc Input Src Mac Addr flgf TCP Control Flag (F). Value is 1 if TCP

Flag F is in flow's TCP flags.

odmc Output Dst Mac Addr flgr TCP Control Flag (R). Value is 1 if TCP

Flag R is in flow's TCP flags.

idmc Input Dst Mac Addr flgp TCP Control Flag (P). Value is 1 if TCP

Flag P is in flow's TCP flags.

osmc Output Src Mac Addr flgu TCP Control Flag (U). Value is 1 if TCP

Flag U is in flow's TCP flags.

Table 25: Syslog schema

Column Description

timestamp Unix timestamp describing when the event occurred.

hostname The name assigned to a device connected to a computer network.

service

pid

The name of the service that generated the event.

PID of the Program that generated the event (not always available).

message Text description of the event.

	Document Information
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Executive Summary
	1. Introduction
	1.1. Objectives and goals of the deliverable
	1.2. Relation with D2.1 and other WPs
	1.3. Structure of the document

	2. Design
	2.1. Overview of the Threat Intelligence (TI) component
	2.2. Differences with D2.1
	2.3. Description of Threat Intelligence subcomponent
	2.3.1. Distributed Collection and Data Preprocessing (DCP)
	2.3.1.1. Interfaces with other components and subcomponents
	2.3.1.2. Modules
	2.3.1.2.1. Collector
	2.3.1.2.2. Registry
	2.3.1.2.3. Data collection
	2.3.1.2.4. Data anonymization
	2.3.1.2.5. Data preprocessing
	2.3.1.2.6. Data storage

	2.3.1.3. Differences with D2.1

	2.3.2. Multimodal Anomaly Detection (MAD)
	2.3.2.1. Interfaces with other components and subcomponents
	2.3.2.2. Modules
	2.3.2.2.1. MIDAS for Network traffic analytics
	2.3.2.2.2. Isolation forest for System log analytics
	2.3.2.2.3. Deep Autoencoder for Network traffic analytics
	2.3.2.2.4. GANomaly for System log and Network traffic analytics

	2.3.2.3. Differences with D2.1

	2.3.3. Threat Classification and Alarm Management (TCAM)
	2.3.3.1. Interfaces with other components and subcomponents
	2.3.3.2. Modules
	2.3.3.2.1. Random Forest

	2.3.3.3. Differences with D2.1

	2.3.4. Recommendation and Remediation (RR)
	2.3.4.1. Interfaces with other components and subcomponents
	2.3.4.2. Modules
	2.3.4.2.1. Input Analyzer
	2.3.4.2.2. Recipe Filter
	2.3.4.2.3. Recipe Instruction Interpreter
	2.3.4.2.4. Output Generator

	2.3.4.3. Differences with D2.1

	3. Specifications
	3.1. Distributed Collection and Data Preprocessing
	3.2. Multimodal Anomaly Detection
	3.3. Threat Classification and Alarm Management
	3.4. Recommendation and Remediation

	4. Implementation
	4.1. Distributed Collection and Data Preprocessing
	4.1.1. Implementation details
	4.1.2. Preliminary Evaluation

	4.2. Multimodal Anomaly Detection
	4.2.1. Implementation details
	4.2.2. Preliminary Evaluation

	4.3. Threat Classification and Alarm Management
	4.3.1. Implementation details
	4.3.1. Preliminary Evaluation

	4.4. Recommendation and Remediation
	4.4.1. Implementation details
	4.4.2. Preliminary Evaluation

	5. Conclusions
	6. References
	7. Annex
	7.1. Annex A: Interfaces of the Threat Intelligence subcomponents
	7.2. Annex B: Data models

