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Executive Summary 

This document presents the description of the first release of all the components related to the Hybrid 

Threat Intelligence Framework and related to the work carried out in the context of Work Package 5. 

All four tasks have been active through the first year of WP5 activities. An updated version will be 

presented in month 32 (April 2023) and will be focused on the second and final release of all the 

components. 

After an overview of Threat Intelligence components, together with their differences with respect to the 

architecture described in deliverable D2.1 (Requirements & High-Level Design), the document 

describes the design of individual subcomponents, namely the Distributed Collection and Data Pre-

processing (DCP), the Multimodal Anomaly Detection (MAD), the Threat Classification and Alarm 

Management (TCAM) and the Recommendation and Remediation (RR). Then, requirements collected 

in deliverable D2.1 related explicitly to WP5 components are reported and translated into technical 

specifications. Finally, before the conclusion, the last section provides in greater depth the 

implementation details for each one of the subcomponents presented above. 
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1. Introduction 

1.1. Objectives and goals of the deliverable 

This deliverable, “D5.1 Hybrid Threat Intelligence Framework – First Release” presents the low-level 

design and technical implementation of the components involved in the PALANTIR Threat Intelligence 

framework, within WP5. It highlights the work performed in tasks T5.1 to T5.4, spanning from the 

creation of scalable data ingestion and preprocessing pipelines to the training and evaluation of 

analytics-based anomaly detection and threat classification models, as well as to the production of 

recommended policies that are leveraged to mitigate the detected threats. For each subcomponent that 

comprises the Threat Intelligence Framework, their technical specs (obtained, iterated, and updated from 

the core requirements agreed upon in D2.1) and their low-level implementation details for the individual 

dependencies, libraries, and tools in use or anticipated to be used, are also provided. 

The primary audience of this document are all technical consortium members; i.e., those involved in the 

implementation and technical decision taking, who participate either in WP5 and/or in the other directly 

or indirectly related WPs (such as WP3 and WP4). This deliverable provides design and implementation 

hints that can be of use to any external technical reader involved in the field of security analytics, 

leveraging data collection, aggregation and analysis capabilities to perform security functions that 

detect, analyse and mitigate cyberthreats. 

This deliverable is the first iteration, out of two, within the WP5-related deliverables. The next 

deliverable (D5.2) is due in month 32 (April 2023), where the final design and implementation of WP5 

components is expected along with finalised interactions, inter-component APIs and other interfaces in 

use to enforce the cross-WP workflows within the PALANTIR platform. The next release will also 

include the alarm management functionalities that will enable standardised threat intelligence sharing 

to/from external sources, via the Threat Sharing component described in D4.1. It should be noted that 

some technical aspects of this first release may be subject to change after January 2022, when the 

integration of all components will be the major focus, justifying any adaptation required to assure the 

components' integrability with the rest of the PALANTIR platform. 

1.2. Relation with D2.1 and other WPs 

Similarly, to the rest of the technical deliverables relevant to the first release of PALANTIR standalone 

components, D5.1 uses D2.1 as a starting point to dive into lower technical details about the WP5-related 

activities. This is primarily the case for Section 2, where the original PALANTIR architecture and 

agreed workflows are incorporated and adapted to the design of each WP5-related subcomponent. 

Moreover, the requirements indicated in D2.1 are mapped to technical specifications in Section 3, 

explicitly stating the need for the specific subcomponent impacted by the requirement. 

Aside from that, the work presented here has a strong link with WP3-related activities as far as it 

concerns: a) the acquisition of traffic from monitoring Security Capabilities described in D3.1 that 

provides the input for the Distributed Collection and Data Preprocessing subcomponent (DCP) of D5.1 

and b) the mapping of identified threats and their respective mitigation policies produced by the 

Recommendation and Remediation (RR) subcomponent of D5.1 to specific available SCs, consequently 

implemented as SecaaS services (described in D3.1). 

Finally, the work of D5.1 is directly related to WP4, especially with the components described in D4.1. 

More specifically, this deliverable defines the workflows for threat detection that allow for threat 

monitoring and management through the cybersecurity dashboards of the Portal. 
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1.3. Structure of the document 

The structure of the document in the following sections is explained below: 

In Section 2, the overall design of the Hybrid Threat Intelligence framework is explained, based on the 

architecture of the project. Every subcomponent has its design described, including key ideas, kinds of 

data that is communicated or stored, and foreseen interfaces and communications channels with other 

PALANTIR components. Afterwards, any internal module is also described in its own subsection, which 

includes the explicit goal, behaviour and relations in the internal interactions or workflows devised for 

the subcomponent.  

In Section 3, the relevant requirements from D2.1 are revisited and mapped to implementation 

specifications. This effectively refines more generic requirements into specific technical needs to be 

fulfilled, and is aimed towards a more clear and concise definition of the expected features of each 

subcomponent.  

Section 4 compiles the ensemble of technologies, open-source tools and frameworks used in the 

technical implementation of each subcomponent and its respective modules. each module and 

submodule. It also emphasises their added benefits and adequacy to the envisaged setting through a per-

module preliminary evaluation. 

Section 5 is the conclusion and includes some remarks on what has been achieved and the next steps. 

Finally, the provided annexes include the PALANTIR intra-subcomponent interfaces for each of the 

aforementioned subcomponents, as well as the definition of the data models that describe the main data 

sources for the current release. 
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2. Design 

This section details the design choices for the WP5-related Threat Intelligence component and its 

internal subcomponents and modules. Specifically, the following sub-sections document the design for 

the Distributed Collection and Data Processing (DCP), the Multimodal Anomaly Detection (MAD), the 

Threat Classification and Alarm Management (TCAM) and the Recommendation and Remediation (RR) 

subcomponents. 

2.1. Overview of the Threat Intelligence (TI) component 

The Threat Intelligence (TI) component complements the protection provided by the Security 

Capabilities (SCs) part of the Secure Services Ecosystem (described in D3.1) with advanced analytics 

mechanisms based on Machine Learning (ML) and Deep Learning (DL) and provides automatically 

generated remediations to address the detected threats. 

The following Figure 1 reports the high-level architecture presented in D2.1 and positions the TI 

component within the whole PALANTIR architecture. 

 

Figure 1: PALANTIR architecture 

The TI comprises four subcomponents: 

1. Distributed Collection and Data Preprocessing (DCP) 

2. Multimodal Anomaly Detection (MAD) 

3. Threat Classification and Alarm Management (TCAM) 

4. Recommendation and Remediation (RR) 

From a high-level perspective, the four subcomponents are arranged in a pipeline as reported in the 

following diagram (Figure 2). 

 

Figure 2: High-level WP5 subcomponents pipeline 
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The DCP subcomponent is in charge of collecting data from heterogeneous sources from monitoring 

SCs, running pre-processing and anonymization operations to prepare the data in a format suitable for 

the ingestion to the subsequent MAD subcomponent. 

The MAD subcomponent implements a set of Anomaly Detection methods based on ML and DL taking 

into account multiple modalities of data from heterogeneous sources. Examples of modalities considered 

so far include network traffic flow information and system logs. 

Once an anomaly is detected, a further step is performed by the subsequent TCAM subcomponent, 

whose task is the classification of the detected threat either as false positive (FP) or as a specific type of 

threat. In case the anomaly is not an FP, information is passed to the final RR subcomponent. 

The RR subcomponent is responsible for the automatic generation of remediation for the specific type 

of detected threat by providing a set of policies which can be finally used to configure the appropriate 

remediation SCs. 

The RR subcomponent is, however, not only handling the generation of remediations for threats detected 

and classified by MAD and TCAM subcomponents, but also for the ones identified by the monitoring 

SCs part of Secure Services Ecosystem. In this case, an SC should be able to directly trigger the RR 

subcomponent without involving DCP, MAD and TCAM subcomponents. As depicted in the following 

Figure 3, the TI component, by adopting a hybrid approach, simultaneously combines the analytics-

based methods with more traditional signature-based Intrusion Detection Systems (IDSs) which are 

deployed as SCs. 

 

Figure 3: High-level representation of hybrid Threat Intelligence according to DoA 

In addition to the principal information flow presented above, there are additional per-subcomponent 

functionalities and intra-component interactions that will be detailed in the following subsections. 

Regarding the interactions with other PALANTIR components, the TI is mainly involved in two cross-

component workflows which are interleaved to the TI-specific pipeline described above: Event 

Handling and Periodic Attestation. 

Figure 4 depicts the Event Handling workflow. The TI receives network traffic data from monitoring 

SCs through DCP’s distributed collectors which are running within the Security Capabilities Hosting 

Infrastructure (SCHI). Optionally, system logs are also collected from assets protected by the 

PALANTIR solutions (e.g., a medical server containing sensitive data). The MAD subcomponent reads 

the input data and performs the Anomaly Detection. In case an anomaly is found, the TCAM 

subcomponent classifies the specific type of threat and forwards the threat results to the Portal 

component so that an alert is displayed to the user. At the same time, the RR subcomponent generates 

recommended policies to mitigate the identified threat. This step requires an interaction with the Security 

Security Capability Orchestrator (SCO). The RR subcomponent provides a list of mitigation options, 

which finally enables the user to request the the deployment of relevant SCs through an interaction with 



 

 
 

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page:   15 of 65 

Reference: 1.0 Dissemination:  PU Version: 1.0 Status: Final 

 

the Service Matching (SM) component that is responsible for the selection of the optimal SC along with 

the provision of billing information to the user. 

The Periodic Attestation workflow is reported in Figure 5. From the TI perspective, part of the steps up 

to the detection of a data breach are shared with the previous workflow for threat detection. The 

peculiarity of this type of event is that it requires additional operations which go beyond the ones 

deployable as SCs and handled by SCO. For this reason, this workflow does not foresee a direct 

interaction from RR to the Portal. The rest of the actions are instead handled by the Trust, Attestation 

and Recovery (TAR) component and analysed in greater detail in D4.2. 

 

Figure 4: Event Handling workflow 

 

 

Figure 5: Periodic Attestation workflow 
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2.2. Differences with D2.1 

With respect to the high-level architecture description reported in D2.1, this deliverable provides much 

more details regarding the design and implementation of the Threat Intelligence component. The 

reported workflows clarify the information flow within TI across its subcomponents and towards the 

other PALANTIR components. 

The design of the hybrid approach described in D2.1, simultaneously combining the analytics-based 

methods with more traditional signature-based Intrusion Detection Systems (IDSs), has not been 

completely addressed yet. The first release of the TI component defines individual analytics modules, 

but their complete integration, which also requires cross-component interactions, has been postponed 

for the final release (due in April 2023). An example of their combination might be represented by the 

generation of meta-alerts that comprise ML-based (WP5) and rule-based (WP3) systems. 

Another deviation is related to the interaction of the TI component with the TAR component, something 

which can be relevant for the detection of data breaches. According to D2.1, the attestation results from 

the TAR component are also forwarded to the TI. For the detection of these types of anomalies TI 

already includes a MAD module that can analyse syslog data from the deployed infrastructure. Its 

detection capabilities could be improved by also considering attestation data (e.g., failed attestation 

reports), but, given that this is achievable only after the full integration of all the PALANTIR 

components, the use of this additional information has been postponed to the second release. 

Additional deviations from D2.1 and related to specific subcomponents are reported in dedicated per-

subcomponent sections. 

2.3. Description of Threat Intelligence subcomponent 

2.3.1. Distributed Collection and Data Preprocessing (DCP) 

The Distributed Collection and Data Preprocessing (DCP) subcomponent is responsible for collecting 

different types of data, pre-processing them and making them available for the rest of the PALANTIR 

components. DCP can achieve high throughput and low latency in the collection and preprocessing 

phases. Both the collection and preprocessing modules are distributed and scalable, in order to meet the 

infrastructure’s requirements about the data volume. All modules of DCP can be deployed either on bare 

metal (vCPE delivery model) or on a Kubernetes (K8s) cluster. 

The DCP subcomponent consists of three main modules: the Data Collection (DC) module, the Data 

Preprocessing (DP) module and the Anonymization Service module (AS). Also, there is DCP’s storage, 

which uses OpenDistro Elasticsearch. In the current release, the DCP subcomponent supports collection 

and pre-processing of netflow data and syslog data. 

Data Collection module consists of the Collector, the Registry service and the Source and Sink 

Connectors for Kafka. The Registry Service is responsible for storing all instances of Kafka Connectors, 

along with their health status (i.e., if a connector is down or not reachable). The Collector is responsible 

for collecting binary netflow data and dumping them into nfcapd files. Each time a nfcapd file is created, 

the Collector module must find an available Kafka Source Connector for netflow data to forward the 

collected nfcapd file. Registry service provides an endpoint, which returns the next available connector, 

achieving load balancing (round-robin) between all available connectors. The Collector gets the next 

available connector and sends the collected nfcapd file. The Kafka Source Connector for netflow data 

converts the received nfcapd file to .csv file and ingests it to Kafka. During ingestion process, each 

record of the converted .csv file is a separate Kafka message. The last part of the Data Collection module, 

namely the Kafka Sink Connectors, is responsible for ingesting the pre-processed & anonymized 

netflow data in DCP’s storage. 
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Data Preprocessing module is responsible for two main operations: i) anonymization of the input IP 

addresses, ii) creation of features from the collected netflows that are relevant to other components. The 

Data Preprocessing module fetches collected netflows from a Kafka topic and writes back in Kafka the 

preprocessed & anonymized netflows, to be consumed from other components. 

Anonymization Service module consists of a REST service and a storage layer. The storage layer uses 

a Redis database and stores pairs of the original and the obfuscated IP addresses. The developed REST 

service provides the required endpoints to anonymize and de-anonymize IP addresses. The 

anonymization function is implemented using the Crypto-PAn algorithm. The de-anonymization 

function is using Anonymization’s storage layer to retrieve a de-anonymized IP address, given an 

obfuscated IP address. 

Figure 6 shows the dockerized architecture of the DCP subcomponent deployed in PALANTIR’s testbed 

and the flow described in the previous paragraph. 

 

Figure 6: Dockerized Architecture of the DCP component 

 

2.3.1.1. Interfaces with other components and subcomponents 

The DCP subcomponent interacts with the deployed SCs in order to collect forwarded data from the 

infrastructure network devices. It also interfaces with the MAD subcomponent to provide anomynized 

and preprocessed streaming data for the execution of the anomaly detection algorithms. Finally, it 

interacts with TCAM, in order to de-anonymize the threat findings before they are further pushed to the 

RR subcomponent and to the Portal. Given that the DCP constitutes the core data exchange hub of the 

TI component, a full list of the implemented interfaces for the first release is provided in Annex A. 

2.3.1.2. Modules 

2.3.1.2.1. Collector 

The Collector module is part of the Data Collection and Preprocessing subcomponent and initiates the 

ingestion chain for collected data. This module receives collected data and forwards them to the data 

collection module. 

In the netflow use case, the Collector module listens to a specific socket, where binary netflows are 

forwarded from the PALANTIR infrastructure’s network devices (i.e., a resource hosting SC instances). 

Every few seconds (or minutes), the collected netflows are dumped into nfcapd files. The Collector 

module forwards the created nfcapd files to the Data Collection module to be ingested in PALANTIR’s 

message bus. Prior to forwarding these files, the target endpoint must be identified by the Collector 

module. Thus, it communicates with the Registry module, which returns the target endpoint for the 

collected file, and then forwards the created nfcapd file accordingly. 
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2.3.1.2.2. Registry 

The Registry module is the unit of the Data Collection and Preprocessing subcomponent, which is 

responsible for holding information about all instances of the Data Collection module. The Data 

Collection module consists of multiple submodules, which are running in a distributed manner. A part 

of them is responsible for ingesting data to the PALANTIR’s message bus while the rest of them are 

responsible for fetching data from the message bus and sending them to another module. 

Whenever a data collection instance is started, it is registered in the Registry module, providing 

information regarding its name and its endpoint URL. Respectively, if an instance shuts down gracefully 

without errors, an un-register request must be sent in the Registry module to remove it from list of 

available instances. Moreover, the Registry module pings all available instances periodically to check 

their status. If an instance is down, it is removed from the list of available ones. Finally, as mentioned 

above this module is responsible for informing the Collector module about the target endpoint to which 

the collected data should be sent, achieving load balancing between the available instances. 

2.3.1.2.3. Data collection 

The Data collection module consists of multiple submodules, that materialise two different tasks: i) 

ingestion of collected and forwarded data to the message bus, ii) fetching of data from the message bus, 

conversion to appropriate format and forwarding to other modules (i.e., data storage module). Both tasks 

can be completed by running multiple distributed instances of each submodule, achieving high 

throughput and low latency. 

The Source connector submodule is responsible for the former task (ingestion of data to the message 

bus). It consists of three components: i) an API to receive files, ii) a FileWatcher service to check for 

new files and iii) a SourceTask process, which ingests collected data to the message bus. In the netflow 

use case, the received files are nfcapd files, as they are created from the Collector module. 

• The developed API provides an endpoint to receive nfcapd files from the Collector module. 

Every received file is converted to a .csv file and is stored under a pre-defined directory 

(configured via the source connector’s properties). It is also responsible for registering and un-

registering the source connector from the Registry module and for periodically updating its 

status providing its name and its URL endpoint via HTTP requests. 

• The FileWatcher service is continuously running in the background checking the directory of 

the converted .csv files for new entries. It provides an interface, which must be implemented by 

all listeners who receive messages from it. Each time a new entry is detected it sends a message 

to all registered listeners, providing the file's name and location. 

• The SourceTask process, as a registered listener for FileWatcher events, implements the 

interface provided by it. Following the observer pattern, when FileWatcher sends a new 

message, SourceTask receives it. This message contains information about the file that must be 

ingested in the message bus. SourceTask opens the file, reads it line by line and ingests each 

line as a different message in the message bus. For the netflow use case, each line describes a 

netflow record. 

The Sink connector is the submodule which is responsible for achieving the latter task (fetching data 

from message bus and forwarding them to other modules). It can also have multiple instances and run 

in a distributed manner. For the netflow use case, sink connector module instances fetch preprocessed 

& anonymized netflows from the message bus, convert them to appropriate JSON format and then send 

them to the Data storage module. A similar process is also followed for the syslog use case. 

2.3.1.2.4. Data anonymization 

Data Anonymization module is composed of three submodules: i) the core application service which is 

responsible for data anonymization/ de-anonymization, ii) a fast storage layer for saving original and 

anonymized pairs of data, so that de-anonymization can be executed with low latency, iii) a web user 

interface for monitoring and assisting the usage of the storage layer. 
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In the netflow case the core application service anonymizes and de-anonymizes the IP addresses. 

Preprocessing module sends the IP addresses that need to be anonymized in the core application service 

and waits for an obfuscated IP address as response. 

2.3.1.2.5. Data preprocessing 

Data preprocessing module is responsible for applying all defined preprocessing functions in the raw 

data. The defined preprocessing functions create new features that are useful to the rest of the 

PALANTIR components, exploiting existing features of the collected data. 

In the netflow case, five preprocessing functions are applied in collected raw netflow data. The first pair 

of functions is responsible for encoding the protocol (pr) and TCP flags (flg) columns using one-hot 

encoding. The second pair of functions calculates the total number of flow’s packets and bytes. When 

they are applied to bidirectional netflows the result of the former equals to the sum of the ingoing packets 

(ipkt) plus the outgoing packets (opkt) whereas the result of the latter equals to the sum of the ingoing 

bytes (ibyt) plus the outgoing bytes (obyt). In the case of non-bidirectional netflows the number of 

outgoing packets (opkt) and bytes (obyt) equals to zero, so the results of these two functions are equal 

to the ingoing packets (ipkt) and ingoing bytes (ibyt) respectively. The final preprocessing function 

extracts a new feature from the given netflow data, indicating if the destination port of the netflow is a 

commonly used port of a known service. Below are the listed services alongside with their commonly 

used ports (in parenthesis): FTP (20, 21), SSH (22), Telnet (23), SMTP (25), DNS (53), DHCP (67, 68), 

TFTP (69), HTTP (80), HTTPS (443), POP3 (110), NNTP (119), NTP (132), IMAP4 (143), SNMP 

(161), LDAP (389), IMAPS (993), RADIUS (1812), AIM (5190). 

For the syslog case, a log processing pipeline has been established in order to apply machine learning 

on the collected system logs from monitored assets (e.g., protected servers), covering the need to convert 

the textual logs to numerical features. Subsequently, anomaly detection and threat classification 

algorithms are used to detect and classify logs that are correlated with potentially malicious behaviour. 

Term frequency - Inverse document frequency (TF-IDF) algorithm was applied to transform the textual 

system logs to their vector representations (sparse embeddings). TF-IDF is based on the Bag of Words 

(BoW) model [1], which contains insights about the less relevant and more relevant words in a 

document. The importance of a word in the text is of great significance in information retrieval. The 

process is depicted in Figure 7. 

 

Figure 7: TF-IDF Log Transformation example 

2.3.1.2.6. Data storage 

The Data Collection and Preprocessing subcomponent includes a storage layer which enables the storing 

of the collected data. The collected data are converted to JSON format by the Data collection module 

and are then forwarded to the storage layer. 

2.3.1.3. Differences with D2.1 

So far there are some limitations compared to the Threat Intelligence paragraph in deliverable D2.1. 

Distributed collectors have been deployed as described. They can collect forwarded network and syslog 

data from any device either physical or virtual, if the data are in binary format describing netflow 
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records. The existing limitation (which will be addressed in the second release) is that only netflow 

records in binary format can be collected at the moment and there are no collectors for collecting event 

and logs from these devices. The collected data are preprocessed and anonymized in real time, and they 

are stored in a distributed file system as described in D2.1. Also, they are in format that can be read from 

Multimodal Machine Learning module. 

2.3.2. Multimodal Anomaly Detection (MAD) 

The Multimodal Anomaly Detection (MAD) subcomponent is responsible for running a set of Anomaly 

Detection modules able to detect abnormal behaviours from heterogeneous sources of data. The MAD 

subcomponent works in strict contact with the following TCAM module. Indeed, the detected anomalies 

can potentially contain security threats that will be specifically classified by the next subcomponent. 

At the current status, two types of data sources have been considered: network traffic data and system 

logs. For each data type, multiple Anomaly Detection modules can be run in parallel, each one better 

suited for particular types of anomalies. This is depicted in the following sequence diagram. It should 

be noted that the results produced by multiple modules related to the same data modality (e.g., network 

traffic data) should be aggregated before triggering the threat classification. In other words, the TCAM 

subcomponent is triggered at most once per network flow, whenever at least one Anomaly Detection 

module (among the ones targeting network traffic data) marks the flow as anomalous. 

 

Figure 8: Sequence diagram for the MAD subcomponent 

 

2.3.2.1. Interfaces with other components and subcomponents 

The MAD subcomponent mainly interacts with DCP and TCAM subcomponents. The input data for the 

Anomaly Detection algorithms comes from DCP and, in case an anomaly is detected, output data 

proceeds further in the processing pipeline and is passed as input to the TCAM. 

2.3.2.2. Modules 

2.3.2.2.1. MIDAS for Network traffic analytics 

MIDAS [2] is an Anomaly Detection algorithm suitable for dynamic graph data, i.e., a graph where the 

set of nodes and edges changes over time. Network traffic data can be mapped into a graph 

representation by considering the endpoints of a connection (e.g., the source and destination IP 

addresses) as graph nodes and the connections themselves as edges linking two nodes. MIDAS aims at 

detecting microcluster anomalies which are defined as unusual behaviour in terms of suddenly arriving 
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groups of suspiciously similar edges. Such edges are similar in two dimensions: spatially (regarding the 

nodes they connect in the graph) and temporally (regarding the time frame they appear in). 

The input data for MIDAS, which also defines the granularity of its detection, is a single graph edge. 

Individual network connections are assigned an anomaly score which can be tested against a threshold 

to mark each connection as normal or anomalous. Further details about the tuning of the threshold are 

reported in Section 4.2. It should be noted that although edges are individually classified, the anomaly 

score is computed by taking into account the past history of the traffic or, in other words, the current 

status of the dynamic graph. Two types of anomalies are well detected by MIDAS: the ones manifesting, 

with respect to what has been observed in the past, an unusually higher rate of connections among the 

same pair of network nodes or an unexpectedly higher rate of network connections towards/from a set 

of nodes from/towards a single node. 

In addition to the streaming nature of its approach, MIDAS has two additional features that make it 

appealing for the TI. First, the set of graph nodes (i.e., the source-destination pairs of the network 

connections) is not fixed a priori. Second, MIDAS implementation has a constant memory and update 

time. These two characteristics make it particularly suitable for the real-time requirement of TI. 

2.3.2.2.2. Isolation forest for System log analytics 

Isolation Forest is an anomaly detection algorithm that exploits the concept of “isolated” observations 

after applying a random forest of decision trees [3]. The reasoning is simple, anomaly observations are 

easy to isolate because they will show a significantly shorter path length (Figure 9). Isolation Forest is 

suitable for diverse dataset types and shows an acceptable memory usage, rendering it a promising 

technique to apply in anomaly detection for cybersecurity incidents based on large batches of system 

logs. It is also worth mentioning that the training process can be achieved with normal and anomalous 

traffic in the same dataset, thus making it valid for production environments. 

 

Figure 9: Isolation Forest. Outliers (red) are less frequent than regular observations and require less 

splits (closer to the root of the tree) 

 

2.3.2.2.3. Deep Autoencoder for Network traffic analytics 

The vanilla implementation of Autoencoders is a Neural Network architecture whose purpose is to learn 

the underlying distribution of data by forcing dimensionality reduction and reconstruction of the original 

input. Autoencoders receive an input x∈RN, which gets passed through a series of Neural Network layers 

that produce progressively smaller outputs (Encoder), as shown in Figure 10. This bottleneck performs 

dimensionality reduction of the input x to a latent vector z∈RL<N. The latent vector is then passed through 

a series of Neural Network layers that produce progressively bigger outputs (Decoder) producing the 

output x0 with the goal of reproducing the original input x. Autoencoders for non-binary regression are 

trained using the Mean Squared Error loss. 
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Figure 10: Autoencoder architecture. The forward pass of data is from left to right. The input is first 

encoded into a latent vector and then decoded, producing the reconstruction of the input 

In order to detect anomalous behaviour, Autoencoders are trained with normal/benign traffic only and 

are expected to produce outputs with a high loss when fed with anomalous data. This happens because 

anomalies do not belong to the distribution of normal behaviour that is learned by Autoencoders. 

2.3.2.2.4. GANomaly for System log and Network traffic analytics 

The GANomaly architecture proposed comprises a Generative Adversarial Network (GAN) [4], [5] 

based on the aforementioned Autoencoder architecture, purposefully built for outlier detection purposes. 

A GAN is comprised of two neural networks contesting with each other in a zero-sum game, depicted 

in Figure 11.  

 

Figure 11: GANomaly architecture. A Generative Adversarial Network that relies on 3 autoencoders, 

the Generator, the Feature Extractor and the Discriminator 
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The Generator network aims to learn the underlying data distribution and produces samples from the 

learnt distribution. The Discriminator network identifies data as either real or generated by the 

Generator. After training, the Generator can be used to generate new samples or perform various other 

tasks. GANomaly is a GAN that uses an Autoencoder as the Generator. Two extra encoders are also 

employed, one being the Discriminator and the other being a feature extractor that re-encodes the 

reconstructed input. The Generator’s loss is a weighted sum of three loss functions which all aim to help 

the Generator learn the underlying data distribution so that any outliers stand out from the other data 

points. 

On inference mode, the prediction relies on deciding whether each data sample is an outlier or not, given 

its anomaly score A. This score is calculated by taking the difference between the feature extractor’s 

latent vector and that of the Generator, which we scale to [0,1]. A high anomaly score means a high 

confidence of the sample being malicious, while a low score means that the sample is predicted as being 

normal. The decision boundary can be defined on a per-use case basis depending on the precision-recall 

trade-off that is acceptable. 

2.3.2.3. Differences with D2.1 

As anticipated in Section 1.2, the main deviation relevant to the MAD subcomponent is related to the 

combination of analytics-based methods with more traditional signature-based Intrusion Detection 

Systems (IDSs). This combination requires interactions with other PALANTIR components 

(specifically with WP3 components) and will be addressed in the second release. 

2.3.3. Threat Classification and Alarm Management (TCAM) 

The outlier flows (flows that signify malicious/suspicious behaviour) detected by the MAD module, are 

pushed to the TCAM module. The latter is responsible for classifying them either as false positives or 

as threats, and providing a corresponding confidence score for each predicted label. 

In a similar way to the MAD subcomponent, TCAM is responsible for assigning threat labels on two 

distinct data modalities: network traffic data and system logs. For each data type, the corresponding 

TCAM modules are implemented as independently trained models which can be run in parallel. 

In this first release, two Random Forest machine learning models were trained to support the core threat 

detection functionalities for the aforementioned data modalities. It should be noted that, although their 

algorithmic design is similar in both cases, each model receives different data as input (i.e., nfcapd files, 

system logs) and is relevant for complementary attack scenarios (i.e., network-based threats, endpoint-

based threats). The operations handled by TCAM are illustrated in the following sequence diagram. 

 

Figure 12: Sequence diagram for the TCAM subcomponent 
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2.3.3.1. Interfaces with other components and subcomponents 

The TCAM subcomponent interacts with the DCP, MAD and RR subcomponents. The output of the 

Anomaly Detection algorithms from MAD (detected anomalies) is provided as input to the TCAM 

modules. TCAM then assigns a threat label to each identified anomaly along with a classification 

confidence score and passes this information to the RR subcomponent which is tasked with proposing 

remediation policies relevant for the threat at hand, and to the DCP subcomponent which handles storage 

and forwarding to other PALANTIR components (e.g., Portal). 

2.3.3.2. Modules 

2.3.3.2.1. Random Forest 

Random Forest is an ensemble, supervised machine learning method used for classification. It constructs 

a multitude of decision trees at training time and outputs the mode of the classes (the most repeated 

value) of the individual trees as the final class [6]. Essentially, each tree’s prediction is counted as a vote 

for one class and the final label is predicted to be the class which receives the most votes (majority vote) 

(Figure 13). The algorithm applies the general technique of bootstrap aggregation (or bagging) to tree 

learners, leading to a better performance model by decreasing the variance, without increasing the bias. 

Random forest is considered one of the best-performing ML algorithms, mainly because of its ability to 

remove decision trees' habit of overfitting the training set (being too much dependent on the training set 

and not performing so well in the testing set) and of its excellent classification accuracy compared to 

current algorithms [7]. In the case of network traffic classification, the datasets are usually unbalanced 

since the majority class (normal traffic) is usually orders of magnitude higher than the minority classes 

(attack flows). Therefore, classifiers are overwhelmed by the dominating class and tend to ignore the 

flows related to malicious activity. Random forest is of no exception, thus techniques like cost-sensitive 

learning and oversampling of the minority class are leveraged to tackle this issue. 

 

Figure 13: Random Forest architecture. It constructs a multitude of decision trees at training and 

outputs the mode of the classes of the individual trees 

 

2.3.3.3. Differences with D2.1 

Two main deviations relevant to the TCAM subcomponent are identified below:  

• According to D2.1, only network-based information is provided as input to the classification 

algorithms of the Hybrid Threat Intelligence component. However, during the early 
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implementation activities of the project, it became apparent that specific types of threats 

(specifically those related to endpoint events such as data breaches) are typically not detectable 

using this modality. To this end, WP5 partners decided to further extend the detection 

capabilities of the TI by introducing an additional data modality (syslog data), resulting in the 

implementation of the corresponding classification algorithm that enables real-time monitoring 

of endpoint events by consuming system logs.  

• Given that the focus of T5.3 partners for this first release was given on the training of threat 

classification models for the aforementioned modalities and the integration activities with the 

rest of the TI subcomponents, the threat sharing functionalities mentioned in D2.1 (“Threat 

Intelligence data is shared using STIX format”) was pushed to the final release of the TCAM 

subcomponent. 

2.3.4. Recommendation and Remediation (RR) 

The Recommendation and Remediation tool is in charge of: 

• recommending the actions to take in order to mitigate the increased threats that other 

PALANTIR tools have identified. The information about the risks to mitigate is reported in a 

Threat Intelligence Report from the pipelined analytics components (i.e., TCAM threat 

findings). The solutions that are identified by the RR tool named remediation recipe, which are 

sequences of actions that are explained in an abstract format. 

• deploying the recipe selected by the PALANTIR user, which produces the set of changes to 

perform to the landscape (e.g., adding new security controls, such as SC configrations) and the 

changes to the configuration of the security controls in the landscape (including the ones that 

the RR tool proposes to add). 

All the remediation recipes are characterised by: 

• a set of labels that indicate the threat scenario for which they have been developed. 

• a set of enabling constraints that allow understanding all the constraints for their applicability. 

For instance, they report all the information necessary for their correct deployment and the 

security capabilities they need to be enforced (e.g., a layer7 filter), which may not be available 

in the network. 

• the set of remediation deployment instructions, written in an abstract language, that 

programmatically state all the steps that need to be performed to remediate the identified risks. 

Figure 14 reports an example recipe that can be fed to the Recommendation and Remediation module. 

In particular, this recipe is able to remediate an ongoing attack on a specific host in the network by 

inserting in the path between the attacker and the target host a control on a specific payload. For example, 

this can be useful if the impacted host has become part of a botnet, and the Command and Control 

messages between them exhibit a specific string that can be filtered to disrupt the communication 

between the bot and the botnet master. 

The language describes different concepts, which are reported here using different colours: 

• the operations that are available as they are exposed either from the PALANTIR framework or 

any of its components, in green, e.g.: 

▪ adding security controls, 

▪ modifying the configuration of specific security controls, 

▪ modification to the network layout or flows, 

• language-specific concepts, in red, introduced to satisfy the language required features, e.g.: 

▪ results from past computations, 

▪ placeholders for predefined concepts, 

• inputs from the threat intelligence findings from TCAM, in orange. 

It should be noted that the actions are tailored to the actual landscape of the target network. In this case, 

if a security control with payload filtering capability is already present in the path from the impacted 

host to the attacker, the existing control is reconfigured to filter the target payload; otherwise, new 
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security control is placed in front of the impacted host, and is properly configured with the needed 

filtering rules. 

 

Figure 14: Example recipe of the Recommendation and Remediation module 

The target landscape is described using a Landscape Description Language. This is a graph-based 

representation of the network layout, which describes both nodes (and their attributes, e.g., capabilities) 

and edges. This representation is prone to be imported with graph libraries available for the main 

programming languages (e.g., iGraph on Python). Currently, it is represented as a simple text file that 

follows the specification defined during a past EC-funded project (SECURED [8]). However, the final 

format for the landscape description has not been decided. Furthermore, we are also investigating the 

possibility of avoiding using network graphs if the network flows will be expressive enough for our 

needs. 

This component will implement the following workflow, which can be divided into two phases: 

• recommendation of recipes (see Figure 15); 

• deployment of the selected recipe (see Figure 16). 

 

Figure 15: The RR tool workflow, phase 1: recommendation 

When the RR tool receives the notification of a risk to mitigate in the form of a Threat Intelligence 

Report (TIR), it uses the information in the TIR to look up into a database where all the remediation 

recipes are stored (DB lookup). All the remediation recipes are labelled according to a standard set of 

list_paths from impacted_host_ip to 'attacker’ 

iterate_on path_list 

find_node of type ‘l7filter’ in iteration_element 

if not present 

add_firewall behind impacted_host_ip in iteration_element with level 7 

add_filtering_rule predefined_rules to new_node 

else 

add_filtering_rule 'filter_payload_X' to found_node 

endif 

end iteration 
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categories. For instance, the recipe to mitigate the risks from a malware infection is labelled as ‘malware’ 

and further refined with additional more specific data, as ‘botnet’ or ‘ransomware.’ If needed, custom 

recipes against specific strains of malware may be added to increase the efficacy of the proposed 

mitigations. The TIR includes the same set of labels, allowing very fast filtering of the recipes. 

The recipes produced by the DB lookup phase are all the recipes that can mitigate a specific set of 

threats. Nonetheless, it is not ensured that these recipes could be deployed in the current threat scenario 

affecting the target landscape at this stage. For this purpose, an additional step is performed, named 

Applicability Check, where all the enabling constraints are evaluated. The applicability report lists all 

the directly applicable recipes. All the recipes that have not been evaluated as applicable report the 

constraints that were not satisfied. Therefore, a user analysing the report can provide additional 

information that can make additional recipes applicable (e.g., missing IP/URL information or missing 

information about honey pot networks). The additional data provided by the users are saved in a special 

data structure named TIR integration (e.g. within the RR subcomponent). In this way, these data are 

neither forgotten nor merged with official information coming from the tool. It is a future task to 

understand how this information can be integrated into future versions of the PALANTIR framework. 

 

Figure 16: The RR tool workflow, phase 2: deployment 

The next phase of the RR tool workflow starts when the user decides the remediation recipe to enforce. 

At this point, the Recipe Deployment Engine reads and starts interpreting the deployment instructions. 

In the first phase, all the generic concepts are made concrete with the TIR and the TIR Integration 

information. Taking as an example the recipe in Figure 14, the generic concepts “impacted_host_ip” to 

“attacker” are substituted with their actual IP addresses, as provided by the TIR (following a de-

anonymization process from DCP), in order to list all the possible paths between the impacted host and 

the attacker. 

A remediation recipe interpreter executes the deployment instructions with concrete information and 

generates as output: 

• (optionally, if the networked scenario where the remediation takes place needs it) a set of 

suggested changes to the landscape. It should be noted that while some of these changes may 

be performed automatically based on the functionalities of the existing SCs, others will require 

access to the network/infrastructure from the client’s side . Examples of these changes are: 
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▪ moving network nodes to a different position in the network 

▪ removing nodes from the network 

▪ changing the network connectivity (either by connecting a node to a different network 

or by redefining the flows by changing the routing information) 

▪ adding nodes (e.g., security capabilities) 

• a list of all the security capabilities involved by the remediation together with the changes to the 

configurations of all the involved security capabilities, either already present in the landscape 

or proposed by the RR tool and evaluated by the SM component in terms of feasibility and cost. 

These configurations are provided with an abstract language (medium-level policy language) 

that configures standard security features. 

2.3.4.1. Interfaces with other components and subcomponents 

The RR tool interacts (or will interact in future iterations) with the following PALANTIR components: 

• TCAM, which will provide this subcomponent with the information discovered by the threat 

intelligence; 

• Security Capability Orchestrator (SCO), which will process the instructions provided as output 

by this subcomponent to actually remediate the threat scenario identified by the TCAM. 

• Service Matching (SM) for proposing a deployment plan per identified recipe based on the 

current status of the infrastructure. 

• Recovery Service (RS), in cases that involve infrastructure-related mitigation actions (e.g., node 

attestation scenarios). 

2.3.4.2. Modules 

 

Figure 17: Architecture of the Recommendation and Remediation tool 

This section provides insights into the Recommendation and Remediation tool (see Figure 17), 

particularly detailing the sub-modules constituting the tool and the communications intercurring 

amongst them. 

2.3.4.2.1. Input Analyzer 

The Input Analyzer is tasked with the interpretation of the Threat Intelligence Report. It extrapolates 

from the TIR the information needed to enrich the recipe instructions with concrete information. This 

includes the type of risk that must be remediated and the IP addresses (and possibly the TCP/UDP ports) 

of the impacted hosts and the attacker. 
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The input Analyzer stores the interpreted information into a Knowledge Base (KB), which is used to 

store all the data produced by all the RR tool components. 

The Input Analyzer is also the module that parses and stores into the KB the additional information 

provided by the user as TIR Integration. 

2.3.4.2.2. Recipe Filter 

The Recipe Filter is the module that reads from the KB both the TIR and TIR integration. It extracts the 

labels and the additional information that allows categorizing the threats. From the extracted 

information, this module properly selects the Recipe that applies. More precisely, this module queries 

the RR Recipe DB and: 

• extracts the applicable recipes 

• checks the satisfaction of the enabling constraints associated with selected recipes 

• produces the Applicability Report 

• produces the Applicable Recipe list. 

The Applicability Report is then presented to the user. The Applicability report is currently a list of 

Recipes and the information that the Recipe Filter was not able to collect or verify the Enabling 

Constraints. Examples of Enabling constraints are: 

• check for the presence of specific attributes (e.g., the IP addresses of the C2 for malware 

infections); 

• need for specific security capabilities (e.g., if the Security Capability Catalogue contains an 

element able to filter by URLs). 

The recipes in the Applicability Report for which all the constraints are satisfied are listed in the 

Applicable Recipe List. 

2.3.4.2.3. Recipe Instruction Interpreter 

This module is in charge of deploying the recipe that it receives as input. The recipe to deploy is received 

as user input. 

When the user selects a recipe amongst the applicable ones presented by the Recipe Filter, the Recipe 

Instruction Interpreter (RII) interprets the deployment instructions contained in the recipe. This module 

concretizes them using the information contained in the Knowledge Base. 

For the interpretation of deployment instructions, the RII may need to delegate computations to specific 

Enrichment Modules. These modules expose methods and attributes that can be used when writing 

recipes and save their results. Currently, two Enrichment Modules have been implemented. 

• The Landscape Analysis Module is in charge of working on the network graph. For instance, it 

exports: 

▪ operations on nodes and edges, e.g., querying for nodes having specific properties 

(find_node) 

▪ operation on paths, e.g., list all the paths between two network nodes, check 

reachability between nodes (list_paths) 

• The Capability Management Module represents the interface to the PALANTIR Security 

Capability Catalogue (the ‘Level 7’ used when adding a firewall). 

The result of the execution of the recipe, which is also stored in the KB, is a set of instructions that 

represent the modifications to the current landscape: 

• changes to the landscape such as: 

▪ adding new nodes, including adding new security capabilities 

▪ deleting edges and disconnecting nodes from the network 

▪ moving nodes to different networks 

• change to the security capabilities configurations: 

▪ adding rules to the configurations of specific security capabilities. 
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2.3.4.2.4. Output Generator 

When the interpretation of all the deployment instructions is complete, the Output Generator reads the 

KB and provides the output to the user. 

This module outputs: 

• the needed modifications to the landscape, including, for example, new security capabilities that 

must be deployed and the necessary alterations to the connections amongst network nodes, 

which will be sent to the Security Capability Orchestrator for their deployment; 

• the configurations for both the new and the existing Security Capabilities, which will also be 

sent to the Security Capability Orchestrator for deployment; 

• a set of deployment logs describing all the actions taken to remediate the risk. 

This module is currently a simple interface to the KB. However, more features could be needed in the 

future for directly interacting with the Security Capability Orchestrator and pushing commands. 

2.3.4.3. Differences with D2.1 

The D2.1 only provided the description of the functionalities and requirements of the RR Module. Both 

these data have not been changed. On the other hand, this deliverable presents the initial architecture, 

workflows, and data models. 
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3. Specifications  

This section continues with mapping the relevant PALANTIR requirements provided in D2.1 to actual 

technical specifications for each TI subcomponent. The technologies and frameworks mentioned in this 

section are further described in Section 4. 

3.1. Distributed Collection and Data Preprocessing 

Table 1 Specifications of the DCP subcomponent 

Req. ID Requirement description 
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R1.1.3 The platform MUST provide near-real-time 

(NRT) data processing functionalities. 
✓ ✓ ✓ ✓ ✓ ✓ 

DCP_S1 A tool; named nfcapd has been used for collecting netflows in the Collector module. 

These collected netflows are the input of the DCP subcomponent. Kafka connectors in 

the Data Collection module implemented Kafka Connect API have been used for 

ingesting data to Kafka and fetching data from Kafka to insert them to Elasticsearch. 

Data Preprocessing module is a Spark Streaming application which preprocess and 

anonymizes collected data, using the Data Anonymization module, which implements 

Crypto-PAn algorithm. 

R1.4.6 The platform SHOULD provide an AI based 

solution to deliver services, and be shared across 

the plain field; however, the data-sharing must 

ensure anonymity. 

-- -- -- -- ✓ -- 

DCP_S2 The anonymization of data is happening in Data Anonymization module. This module 

uses Crypto-PAn algorithm for anonymizing IP addresses. It also provides an API for 

HTTP requests for anonymizing or de-anonymizing IP addresses. The mapping between 

the original and the obfuscated IP addresses is stored in a Redis database. 

R1.5.1 The platform SHALL be able to collect and 

analyse events from heterogeneous sources in 

near real time in order to detect security 

incidents. 

✓ ✓ ✓ ✓ ✓ ✓ 

DCP_S3 A tool, named nfcapd has been used for collecting netflows in the Collector module. 

These collected netflows are the input of the DCP subcomponent. Kafka connectors in 

the Data Collection module implemented Kafka Connect API have been used for 

ingesting data to Kafka and fetching data from Kafka to insert them to Elasticsearch. 

Data Preprocessing module is a Spark Streaming application which preprocess and 

anonymizes collected data, using the Data Anonymization module, which implements 

Crypto-PAn algorithm. The scalability offered by Data Collection and Data 
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Preprocessing modules can handle a big volume of data with low latencies and achieve 

near real-time ingestion and preprocessing. 

R1.5.2 The platform SHALL be able to analyse and 

combine different modalities of data to detect 

anomalies in nearly real time. 

✓ ✓ ✓ ✓ ✓ ✓ 

DCP_S4 A tool, named nfcapd has been used for collecting netflows in the Collector module. 

These collected netflows are the input of the DCP subcomponent. Kafka connectors in 

the Data Collection module implemented Kafka Connect API have been used for 

ingesting data to Kafka and fetching data from Kafka to insert them to Elasticsearch. 

Data Preprocessing module is a Spark Streaming application which preprocesses and 

anonymizes collected data, using Data Anonymization module, which implements 

Crypto-PAn algorithm. The scalability offered by Data Collection and Data 

Preprocessing modules can handle a big volume of data with low latencies and achieve 

near real-time ingestion and preprocessing. 

R1.5.7 The data involved in the analytics processes 

MUST be anonymized. 
-- -- -- -- ✓ -- 

DCP_S5 The anonymization of data is happening in the Data Anonymization module. This 

module uses Crypto-PAn algorithm for anonymizing IP addresses. It also provides an 

API for HTTP requests for anonymizing or de-anonymizing IP addresses. The mapping 

between the original and the obfuscated IP addresses is stored in a Redis database. 

 

3.2. Multimodal Anomaly Detection 

Table 2 Specifications of the MAD subcomponent 

Req. ID Requirement description 
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R1.5.2 The platform SHALL be able to analyse and combine different 

modalities of data to detect anomalies in nearly real time 
✓ ✓ ✓ ✓ 

MAD_S1 Different Anomaly Detection modules from MAD subcomponent target different 

modalities of data, e.g., network flow data and system logs. The requirement of 

operating in near real time is addressed either by design (e.g., MIDAS implementation 

works in constant time and space) or by using scalable frameworks for ML inference 

(e.g., PySpark). 

R1.5.5 The platform SHOULD provide analytics able to detect the most 

common threat types (malware, MitM, volumetric attacks). 
✓* ✓* ✓* ✓* 
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MAD_S2 The benchmark datasets used for the preliminary evaluation covers part of the most 

common threat including, e.g., malware, DoS, DDoS and PortScan traffic. In this first 

release, MitM traffic is not available in our datasets. 

R1.5.6 The platform SHOULD provide analytics able to detect phishing 

attacks. 
-- -- -- -- 

MAD_S3 Not addressed in the first release. The fulfilment of this requirement is planned for the 

second release (D5.2). 

R1.5.7 The data involved in the analytics processes MUST be anonymized ✓ ✓ ✓ ✓ 

MAD_S4 Input data for MAD modules is provided as output of DCP after personal information 

has been anonymized. 

R1.5.8 The platform SHALL provide periodic retrain functionalities for its 

analytics components (e.g., on a monthly basis). 
-- -- -- -- 

MAD_S5 The first release has been more focused on the inference phase, assuming a one-time 

offline training for the models. DCP subcomponent already defines in its operations the 

storage of the data in ELK. The amount and type of data available for periodic re-

training is also affected by the data retention policies. The fulfilment of this requirement 

is planned for the second release (D5.2). 

R2.1.1 The analytics of the platform SHOULD be able to scale with respect to 

the number of data sources, the volume and the velocity of data streams. 
✓ ✓ ✓ ✓ 

MAD_S6 The scalability of the analytics components is achieved either by design (e.g., MIDAS 

implementation works in constant time and space) or by using scalable frameworks for 

ML inference (e.g., PySpark). 

R2.1.2 The analytics components of the platform SHOULD be able to deal with 

the computational and memory limitations posed by large datasets. 
✓ ✓ ✓ ✓ 

MAD_S7 The technical implementation of MAD components is based on scalable distributed 

machine learning frameworks and on linearly scalable algorithms with respect to the 

input data. 

R2.2.1 PALANTIR deploys various big data analytics frameworks that have 

demands in computational power. They MUST be regularly evaluated 

during development, such that they are shown to be accurate with real-

time data. 

✓* ✓* ✓* ✓* 

MAD_S8 The preliminary evaluation of benchmark datasets (Section 4) confirms accurate 

inference on real-time data. The fulfilment of this requirement is planned for the second 

release (D5.2). 

R2.2.2 PALANTIR SHOULD outperform existing conventional methods from 

potential competitors. 
-- -- -- -- 
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MAD_S9 Fulfilment of this requirement premises an integrated PALANTIR platform. It will 

therefore be addressed in the final release of the Hybrid Threat Intelligence framework 

(D5.2). 

R2.2.3 The time to discover critical info & alerts in the security dashboard 

MUST NOT exceed 1 minute. 
✓ ✓ ✓ ✓ 

MAD_S10 The time required to process a single flow by all anomaly detection components 

(MIDAS, IF, AutoEncoder, GANomaly) is less than 1 second. 

R2.2.7 The platform MUST showcase a reduction of false positives and 

negatives of at least 15% compared to commercial solutions. 
-- -- -- -- 

MAD_S11 Fulfilment of this requirement premises an integrated PALANTIR platform. It will 

therefore be addressed in the final release of the Hybrid Threat Intelligence framework 

(D5.2). 

R2.6.2 The PALANTIR modularity level SHOULD allow enough 

independence of all modules so as if any module needs to be replaced, 

this has no consequences to the other modules. 

✓ ✓ ✓ ✓ 

MAD_S12 The three modules part of MAD run independently on each other consuming data from 

a common Kafka topic. 

R2.7.5 PALANTIR SHOULD reuse existing open- source software and tools, 

where it is appropriate and possible according to the license. 
✓ ✓ ✓ ✓ 

MAD_S13 The three modules part of MAD are all based on open-source software. 

R2.7.6 The architecture of PALANTIR MUST be open, extensible, providing 

ability to add new functional components. 
✓ ✓ ✓ ✓ 

MAD_S14 MAD design allows the addition of further AD modules to complement MAD detection 

performance. 

 

3.3. Threat Classification and Alarm Management 

Table 3 Specifications of the TCAM subcomponent 

Req. ID Requirement description 
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R1.5.3 The platform SHALL be able to automatically classify the type of anomaly/threat and 

to share the intelligence information in a standard format. 
✓* 

TCAM_S1 TCAM implements automated threat classification relying on supervised learning 

(Random Forest). In this first release, threat findings are provided in JSON format, 
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attaching the class label and classification confidence score to the existing data schema. 

Threat sharing functionalities that are leveraging standardised threat representation 

(STIX/TAXII) are planned for the second release of the Hybrid Threat Intelligence 

framework (D5.2). 

R1.5.5 The platform SHOULD provide analytics able to detect the most common threat types 

(malware, MitM, volumetric attacks). 
✓ 

TCAM_S2 TCAM complements the threat detection capabilities of MAD by predicting the class 

of discovered anomalous activity. Since TCAM relies on supervised learning, it can be 

trained to identify the threat label of any attack for which a labelled training dataset 

exists.  

R1.5.6 The platform SHOULD provide analytics able to detect phishing attacks. -- 

TCAM_S3 Not currently addressed due to lack of training data; planned for second TCAM release. 

R1.5.8 The platform SHALL provide periodic retrain functionalities for its analytics 

components (e.g. on a monthly basis). 
✓* 

TCAM_S4 The first TCAM release focused on the inference phase (classification of detected 

anomalies). Both the design of the subcomponent (selected algorithms) and its 

implementation details (selected frameworks) support periodic retrain functionalities, 

which are planned for the second release (D5.2). 

R2.1.1 The analytics of the platform SHOULD be able to scale with respect to the number of 

data sources, the volume and the velocity of data streams. 
✓ 

TCAM_S5 The implementation of the TCAM subcomponent relies on the most widely used, open-

source processing engine for big data, thus ensuring horizontal and vertical scalability 

by design. 

R2.1.2 The analytics components of the platform SHOULD be able to deal with the 

computational and memory limitations posed by large datasets. 
✓ 

TCAM_S6 The technical implementation of TCAM is based on a distributed machine learning 

framework that is not limited to the computational or memory constraints of a single 

machine. 

R2.2.1 PALANTIR deploys various big data analytics frameworks that have demands in 

computational power. They MUST be regularly evaluated during development, such 

that they are shown to be accurate with real-time data. 

✓ 

TCAM_S7 The current TCAM release implements feature engineering functionalities using 

rolling window statistics on streaming (timeseries) data to improve model accuracy. 

The preliminary evaluation on benchmark datasets (Section 4) confirms accurate 

inference on real-time data. 

R2.2.2 PALANTIR SHOULD outperform existing conventional methods from potential 

competitors. 
-- 
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TCAM_S8 Fulfilment of this requirement premises an integrated PALANTIR platform. It will 

therefore be addressed in the final release of the Hybrid Threat Intelligence framework 

(D5.2). 

R2.2.3 The time to discover critical info & alerts in the security dashboard MUST NOT 

exceed 1 minute. 
✓ 

TCAM_S9 The inference time of the currently developed TCAM module measured on regular data 

streams of benchmark datasets does not exceed 10 seconds.   

R2.2.7 The platform MUST showcase a reduction of false positives and negatives of at least 

15% compared to commercial solutions. 
-- 

TCAM_S10 Fulfilment of this requirement premises an integrated PALANTIR platform. It will 

therefore be addressed in the final release of the Hybrid Threat Intelligence framework 

(D5.2). 

R2.6.2 The PALANTIR modularity level SHOULD allow enough independence of all 

modules so as if any module needs to be replaced, this has no consequences to the 

other modules. 

✓ 

TCAM_S11 Additional threat classification modules can be added to TCAM in order to improve 

threat detection accuracy, with no consequences to the operational lifecycle of the 

existing ones. The current module (Random Forest) is itself an ensemble of several 

independent predictors (decision tree classifiers). 

R2.7.5 PALANTIR SHOULD reuse existing open-source software and tools, where it is 

appropriate and possible according to the licence. 
✓ 

TCAM_S12 TCAM relies solely on open-source software and distributed machine learning 

frameworks. 

R2.7.6 The architecture of PALANTIR MUST be open, extensible, providing the ability to 

add new functional components. 
✓ 

TCAM_S13 TCAM supports the addition of complementary ML-based detection modules that 

focus on the analysis of different data modalities (e.g., netflow, syslog). 

 

3.4. Recommendation and Remediation 

Table 4 Specifications of the RR subcomponent 

Req. ID Requirement description 
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R1.1.3 The platform MUST provide near-real-time (NRT) data processing functionalities. ✓* 
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RR_S1 Remediating threat scenarios is a crucial task. Therefore, the RR tool needs to be fast in 

identifying the recipes to choose from and determining the actions that need to be 

enforced in order to mitigate the risks posed by the identified threats. However, Real-

Time reactions are not needed also because this tool requires the administrators in the 

loop to make decisions and confirm choices. The current evaluation did not highlight 

potential issues in reaching NRT data processing. 

R1.3.29 The platform SHOULD prevent and react against Ransomware attacks -- 

RR_S1 The RR tool has only been tested against the botnet scenario proposed by the Use Cases. 

Ransomware is definitely a case the RR tool will deal with in a future version. 

R1.5.4 The platform SHALL be able to analyse an attack report to produce an ordered set 

of suggested actions (e.g., VNFs configuration) to mitigate the attack 
✓ 

RR_S1 The RR tool has been designed explicitly to meet this goal. At the current stage of 

development, it already meets this requirement for selected threat scenarios and will 

cover more scenarios in the future versions. 
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4. Implementation 

This section covers the implementation details of the different subcomponents introduced in previous 

sections. The logic and technologies are all explained in the following subsections, mirroring the 

structure of Section 2. The code for each subcomponent for this first release of the Hybrid Threat 

Intelligence framework is available at the following repositories: DCP [9], MAD [10], TCAM [11], RR 

[12]. 

4.1. Distributed Collection and Data Preprocessing 

4.1.1. Implementation details 

The Distributed Collection and Data Preprocessing (DCP) subcomponent has been designed and 

developed in such way, that all of its modules can be deployed either dockerized (i.e., in a Kubernetes 

cluster) or non-dockerized. Figure 18shows the dockerized architecture of DCP subcomponent. Apache 

Kafka [13] has been selected as PALANTIR’s message bus. 

 

Figure 18: The entire pipeline schema for Distributed Collection and Data Preprocessing mechanism 

The Collector module, which is responsible for collecting forwarded binary netflows, uses the nfcapd 

tool to capture these netflows and save them to nfcapd files. Also, a Python service is developed for 

sending the nfcapd files into the available connectors, which will ingest them to Kafka. This service 

makes an HTTP request in the registry module every time that a new nfcapd file is created. The Registry 
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will send a response with the next available connector. Finally, the Collector will try to send the nfcapd 

file in this connector along with its filename. 

For the implementation of the Registry module, a Python service and a Python API have been 

developed. The developed service is a health check service. It pings all registered connectors to check 

if they are still online. If it gets an error response or no response at all from a connector, the registry 

removes this connector from the list of the available connectors. The provided API has been 

implemented using the Flask library[14], and is used by all the connectors to be registered, unregistered, 

or updated. Also, it is used by the collector when it searches for the next available connector. 

Developed Source Connectors are submodules of the data collection module. They have been designed 

and implemented on top of the Kafka Connect API. Kafka Connect is an API, which is used to ingest 

data to Kafka from other sources, or to fetch data from Kafka and ingest them to other sources. It also 

supports distributed deployment of Kafka connectors. Source connectors are designed to ingest data 

from different sources into Kafka. The developed source connectors for netflow data consist of three 

different parts, which are shown in Figure 19. As depicted in it, the collector module looks for new 

nfcapd files and distributes them among all available netflow source connectors. If the source connectors 

are running dockerized or if they are running in separate machines (either physical or virtual), the 

netflows will not be forwarded to a separate folder as shown in the image, but they will be sent over 

HTTP using their connectors’ API. If all connectors run in the same machine, the collector module can 

distribute the collected nfcapd files in separate directories (one for each connector). 

 

Figure 19: Architecture of designed source connectors for netflow data 

The first part is an API, developed using Python and Flask, which can be used for communication with 

the registry and for receiving files from the Collector module. The second is a service, named 

FileWatcher Service, which monitors a directory for new CSV files with netflow records (a similar 

service is deployed for syslog data). FileWatcher emits events every time a new CSV file is detected, so 

that all registered listeners know about this. Finally, there is the SourceTask which is responsible for 

ingesting the csv files into Kafka. It reads them line by line and creates a Kafka record for each line. 

SourceTask knows about the new CSV files because it is a registered listener in FileWatcher’s events. 

Both FileWatcher Service and Source Task have been implemented in Java following the observer 

pattern. SourceTask also follows the Kafka Connect architecture implementing the provided API. As it 

is shown in the figure above, the observer in this case is SourceTask. 

Sink Connectors are also submodules of the data collection module. They have also designed and 

implemented using Kafka Connect API. These connectors had also been developed in the Java 

programming language. This type of connectors is used to fetch data from Kafka and forward it to 

another destination. For storage of Data Collection and Preprocessing, Elasticsearch [15] has been 
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selected. The developed sink connectors retrieve netflow records as Kafka messages, converts them to 

appropriate JSON format, and finally, they send them to deployed Elasticsearch. 

The Data anonymization module consists of three submodules.   

Firstly, the application service which is anonymizing/ de-anonymizing IP addresses. This application 

has two core functions. As mentioned before, it is both anonymizing an IP address, given an original 

IP address to return its obfuscated version and de-anonymizing an IP address, given an obfuscated IP 

address to return its original version. Furthermore, the application features the following elements: 

- Usage of Crypto-PAn algorithm for anonymization which anonymizes IP address keeping subnet 

structure. 

- Implementation of a REST-ful anonymization service.   

• (De-)/Anonymize IP addresses making POST requests.  

• Usage of Go programming language, due to its good concurrency, using goroutines.  

- Measurement of the delay time. It measures the time needed until the anonymization function ends. It 

starts measuring the time, when the POST HTTP request is received from Spark (data preprocessing 

module) until the anonymization and the insertion of the obfuscated IP have been completed. The time 

elapsed is also, included in the response of the API, along with the original and the obfuscated IP 

addresses.  

- A Redis database where the data is stored. The usage of the Redis database is to keep a mapping 

between original & obfuscated IP addresses. The advantages of this selection are that it runs in-memory, 

which is extremely fast, and it persists the data. The last one is the Redis Insight web application. This 

GUI provides an intuitive Redis admin GUI and helps optimize the usage of Redis in our application.  

The Data preprocessing module is responsible for fetching raw data from Kafka, preprocessing them 

with some defined functions and then sending the preprocessed data back to Kafka. This module and its 

preprocessing functions have been developed as Spark [16] functions. The communication with Kafka 

for both reading and writing messages has been achieved using Spark Streaming and, more specifically 

Structured Streaming. All Spark preprocessing functions have been written in Scala.  

For the netflow case, data anonymization can also be considered as a preprocessing function, but it takes 

place in another module, the data anonymization module. However, the data preprocessing module is 

the one that initiates the anonymization function and waits for its result using HTTP requests. For this 

reason, a list with all IP addresses that need to be anonymized must be provided during the startup of 

this module. IP addresses in this list can be included using three different ways: i) specific IP addresses 

can be provided, ii) a subnet (with its network mask) can be defined and iii) ranges of IP addresses can 

also be included (only ranges with subnet mask /24 can be recognized). The results of this module are 

three different preprocessed outputs, that will be pushed in three separate Kafka topics. The first one 

includes the preprocessed data without applying anonymization function. The second output includes 

the raw data after the application of the anonymization function. Finally, the third output contains the 

preprocessed data with anonymization function applied to them. The sink connectors of data collection 

module will consume the third output, in order to ingest them to Elasticsearch. For the syslog case, the 

log parsing and TF-IDF operations mentioned in Section 2.3.1 are written in Python using the PySpark 

library.  

The Data storage layer is used to store not only the raw netflow data but also the preprocessed ones. It 

is deployed to an OpenDistro for ElasticSearch server among with a core app of the suite, Kibana. 

Elasticsearch is a highly scalable open-source full-text search and analytics engine. It allows storing, 

searching, and analyzing big volumes of data quickly and in near real time. Moreover, Kibana is utilized 

to visualize the data from Elasticsearch data and to navigate the Elastic Stack. 

4.1.2. Preliminary Evaluation 

A number of preliminary benchmarks have been run in order to evaluate the performance of the 

developed DCP modules. A benchmark mode has been designed for each module. When this mode is 

enabled, these modules will store relevant information and timestamps about the retrieved netflows in a 
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text file during each phase of the ingestion and preprocessing pipeline. More specifically, two different 

benchmarks are designed, one that includes preprocessing & anonymization of the netflow data and a 

second one that does not include preprocessing or anonymization. 

In order to run the aforementioned benchmarks, one Kafka broker has been used, meaning that all topics 

will have only one partition, a Spark deployed in Kubernetes cluster with one executor for the data 

preprocessing module, one instance of netflow source connector and netflow sink connector. The  

Intrusion Detection Evaluation Dataset (CIC-IDS2017) [17] was selected to simulate one hour of 

ingestion of netflows from Day 1 (Monday). Collected netflows will be dumped in nfcapd files every 5 

minutes. In total, 535.989 netflow records have been ingested into the pipeline for each benchmark in a 

time interval of 60 minutes. 

The first benchmark uses all modules of the ingestion pipeline. The raw netflows are collected in nfcapd 

files and are forwarded to netflow source connectors. The connectors extract the netflows and ingest 

them to Kafka as separate messages. The preprocessing module then fetches the data, applies the defined 

preprocessing and anonymization functions and writes the results back to Kafka. Finally, the 

preprocessed & anonymized netflows are retrieved from Kafka, they are transformed and finally pushed 

to Elasticsearch. The flow of this benchmark, along with the separate points where measurements have 

been taken, is shown in Figure 20. 

 

Figure 20: Benchmark with preprocessing flow 

For the benchmark that does not involve any preprocessing or anonymization functions, the average 

end-to-end delay for a netflow record is 61 seconds. We are also reporting the minimum and the 

maximum time needed in order to ingest a netflow end-to-end, which is 5 seconds and 191 seconds 

respectively. Finally, we have measured the average time needed from the Crypto-PAn algorithm of the 

data anonymization module to anonymize the given IP addresses. The average anonymization time 

needed for this algorithm to achieve its goal is 1.56 ms. 

An additional benchmark is leveraged to calculate the ingestion time of raw netflows from the time they 

are collected until the time they are sent to the storage module. In this benchmark no preprocessing or 

anonymization function have been applied. The flow of this benchmark and the capture points are shown 

in Figure 21. 
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Figure 21: Benchmark without preprocessing flow 

For this benchmark, where no preprocessing or anonymization functions are applied, the average end-

to-end delay for a netflow record is 57 seconds. Also, the minimum time needed in order to ingest a 

netflow end-to-end is 4 seconds and the maximum time is 183 seconds. 

In order to further improve the performance of the developed modules, additional benchmarks are 

planned using more instances of the developed modules in order to take advantage of their scalability 

and the distributed performance features. 

4.2. Multimodal Anomaly Detection 

4.2.1. Implementation details 

MIDAS 

The MIDAS anomaly detection module presented in Section 2.3.2 has been implemented starting from 

an open-source version of the algorithm [18]. The implementation has been modified to make it work 

in a streaming fashion by directly consuming events from a Kafka topic rather than reading in one batch 

the whole dataset. The Kafka topic from which events are read is netflow-anonymized-preprocessed. In 

this way, NetFlow events pre-processed and anonymized by the DCP subcomponents are fed into the 

MIDAS module. Input events are further processed to extract relevant information such as the endpoints 

of the connection and the timing information. The implementation has been ported to a Docker [19] 

container which has been tested in the PALANTIR testbed in conjunction with the DCP subcomponent 

to verify part of the TI pipeline from the ingestion of raw binary NetFlow data up to the anomaly 

detection. The container is based on python:3.8 image [20] part of Docker Official Images and requires 

the following Python modules: kafka-python [21], numpy [22] and numba [23] which are all 

automatically installed through pip [24] Python package installer during container build. 

The anomaly detection algorithm requires defining a threshold against which the anomaly score is 

compared to declare whether a network connection is abnormal or not. We configured the threshold as 

the 99th percentile of the anomaly score values observed during a training period which is assumed to 

be free from anomalies. In the following subsection 4.2.2, we report a preliminary performance 

evaluation using a benchmark dataset. The threshold can be adjusted periodically and further 

increased/decreased to better tune the tradeoff among false positives (normal flows marked as 

anomalies) and false negatives (anomalous flows not marked as anomalies). 
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Benchmark datasets 

For the network traffic analytics pipeline, the benchmark USTC-TFC2016 dataset [25] was used to train 

the machine learning algorithms. The dataset consists of two parts: Part I contains ten types of malware 

traffic from public websites, which were collected from real network environments and Part II contains 

ten types of normal traffic which were collected using traffic simulation software that is resembling the 

most common network applications. 

For the syslog analytics pipeline, an open-source benchmark dataset (AIT Log Data Set V1.1 [26]) was 

utilized to train anomaly detection and threat classification models. The dataset contains synthetic log 

data suitable for the evaluation of intrusion detection systems collected from four independent testbeds. 

For the purposes of PALANTIR, a subset of sequential execution of multi-step attacks with sequential 

execution of the following attacks launched against web servers (e.g., network mapping, brute-force 

attacks and vulnerability scans using hydra and nikto tools, web shell attacks, etc.) was selected. 

Additionally, prior to training, the TF-IDF vectorizer of the scikit-learn Python library [27] was used to 

convert textual (system) logs to their numerical representations. Stop-word removal and lower-case 

conversion was applied to the logs, while dimensionality reduction of the 145 features ordered by term 

frequency across the corpus was necessary to create a denser representation of the processed logs. 

Autoencoder 

The prototype versions of Autoencoder variants trained under the scope of MAD module use the Keras 

framework of TensorFlow on Python [28]. The common model specifications in both cases include the 

Leaky ReLU activation function [29], batch normalization using a batch size of 512, a latent vector size 

of 25% the original dimensions and the Adam optimizer [30].  Both models were trained for 60000 

iterations. The following hyperparameters were specific to each model: 

Autoencoder’s learning rate is set equal to 0.002 and a Mean Squared Error loss is used. The Encoder 

consists of 3 layers having 128, 64 and 32 neurons respectively. The latent vector is of size 21 while the 

Decoder consists of 3 layers with 32, 64 and 128 neurons. 

GANomaly 

GANomaly’s learning rate is set equal to 0.0002 for both the Generator and the Discriminator. The 

Encoders and Decoders have the same architecture as the ones used for the Autoencoder, described 

above. For the Discriminator labels, one-sided label smoothing of value 0.9 for the reconstructed inputs 

given by the output of the Generator is utilized, in order to prevent overconfidence of the Discriminator. 

However, a balancing scheme for training the Generator and Discriminator is not implemented and they 

are both trained equally. 

Isolation Forest 

MAD’s IsolationForest algorithm is trained using the scikit-learn Python framework [27]. A 

hyperparameter search is leveraged to determine the optimal values for the decision trees comprising 

the forest (10 estimators) and the percentage of samples utilized by each tree (85% of the dataset). Each 

tree utilizes the full set of the available features. 

4.2.2. Preliminary Evaluation 

MIDAS 

The performance of MIDAS has been evaluated using CIC-IDS2017 dataset [17], an Intrusion Detection 

benchmark dataset containing a mix of benign and common network attacks. The dataset includes traffic 

covering five consecutive days from Monday to Friday measured on a testbed infrastructure and includes 

2.700.000 connections of which more than 500.000 are anomalous. Monday is the only day that contains 

normal traffic, while the remaining days contain both normal traffic and malign traffic including the 

following types of attack: Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, 

Botnet and DDoS. 

MIDAS’ internal parameters (e.g., the size of the CountMinSketch (CMS) data structures and the 

temporal decay factors) have been set to the same values reported in the original paper, i.e., using CMS 
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with 2 hash functions and 1024 buckets, a temporal decay factor ɑ=0.5 and a conditional merge threshold 

ε=1000. The size of MIDAS time slot has been set to 1 minute because the dataset does not provide a 

finer time granularity. We fed traffic data from Tuesday to Friday into MIDAS and computed the 

anomaly score of all the flows. The average processing rate is 222k flows/sec. By using scikit-learn 

Python library we computed the ROC-AUC=0.9925 and average Precision=0.9845. The Receiver 

Operating Characteristic (ROC) curve captures the TPR-FPR (the definition of TPR and FPR is reported 

below) tradeoff at different classification thresholds. ROC-AUC is the area under the ROC curve and 

provides an aggregate measure to quantify the performance of a classification model across all the 

classification thresholds. The Precision quantifies the quota of positive class predictions that actually 

belong to the positive class (i.e., quota of reported anomalies that are actually anomalous flows). 

These two metrics are threshold-independent, and in order to obtain a concrete implementation and to 

investigate the misclassified flows, a specific value of the anomaly detection threshold must be defined. 

We computed two possible values based on the 99th and 99.999th percentile of the anomaly scores 

resulting from feeding into MIDAS the traffic data from Monday (which is known to be free from 

anomalies). The following Figure 22 reports the anomaly score of all the flows (split into train and test 

set) and the two thresholds computed on the train set portion as two horizontal lines. 

 

Figure 22: Anomaly scores of individual flows in CIC-IDS2017 dataset computed by MIDAS 

For each one of the two thresholds, the following table reports additional performance metrics, namely: 

• True Positives (TP): number of positive samples (i.e. anomalies) correctly detected as anomalies 

• False Positives (FP): number of negative samples (i.e. normal flows) wrongly detected as 

anomalies 

• True Negatives (TN): number of negative samples (i.e. normal flows) correctly marked as not 

anomalous 

• False Negatives (FN): number of positive samples (i.e. anomalies) wrongly marked as not 

anomalous 

• Accuracy: computed as (TP+TN)/(TP+TN+FP+FN), it quantifies the percentage of correct 

predictions 

• Precision: computed as TP/(TP+FP), it quantifies the quota of positive class predictions that 

actually belong to the positive class 

• Recall or True Positve Rate (TPR): computed as TP/(TP+FN), it quantifies the quota of positive 

samples that are correctly predicted as positive 

• False Positive Rate (FPR): computed as FP/(FP+TN), it quantifies the quota of positive samples 

that are wrongly predicted as negative 

• F1-score: computed as 2TP/(2TP+FP+FN), it is the harmonic mean of Precision and Recall 

Table 5: MIDAS performance on CIC-IDS2017 for a couple of threshold values 

99-th threshold = 5.91*104 99.999-th threshold = 8.75*105 

TP = 552077 
FP = 170806 
FN = 1572373 
TN = 5569 

TP = 534348 
FP = 86611 
TN = 1656568 
FN = 23298 

Accuracy = 0.9233 Accuracy = 0.9522 
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Precision = 0.7637 
Recall [TPR] = 0.9900 
FPR = 0.0980 
F1-score = 0.8623 

Precision = 0.8605 
Recall [TPR] = 0.9582 
FPR = 0.0497 
F1-score = 0.9067 

 

As expected, a higher value of the threshold (i.e., 8.75*105) provides a much lower number of FP at the 

cost of a reduced number of TP. Even if MIDAS is part of MAD and does not consider the specific 

labels of the anomalous flows, given that CIC-IDS2017 is a labelled dataset, we can a posteriori 

investigate its performance split by the specific type of attacks. The following Table 4 confirms that 

MIDAS, thanks to its ability to consider both temporal and spatial relations across network flows, works 

particularly well for (D)DoS and Port Scan. "Missed quota" column reports the % of flows undetected 

for each attack type, i.e., the misclassified negative samples ("FN" column) over the total number of 

flows ("Tot flows" column). Attack types colored in green (yellow) refer to attacks for which no more 

than 10% (50%) of flows have been misclassified. Red ones are the ones for which more than half of 

the flows have been missed as anomalies. Again, considering a higher value of the threshold (moving 

from the left side of the table to the right one) on one side reduces the FP (as shown in the previous 

table), but on the other side, it also decreases the TP, i.e., the number of FN increases. 

Table 6: MIDAS performance on CIC-IDS2017 split by type of attack 

AD threshold = 5.91*104 
 

AD threshold = 8.75*105 
 

FN Tot 

flows 

Missed 

quota 

    FN Tot 

flows 

Missed 

quota 

Web Attack – 

Brute Force 

1507 1507 1.0000   FTP-Patator 7938 7938 1.0000 

Web Attack – XSS 652 652 1.0000   SSH-Patator 5897 5897 1.0000 

Web Attack – Sql 

Injection 

21 21 1.0000   Bot 1966 1966 1.0000 

Heartbleed 11 11 1.0000   Web Attack – 

Brute Force 

1507 1507 1.0000 

Bot 1961 1966 0.9974   Web Attack – XSS 652 652 1.0000 

Infiltration 17 36 0.4722   Web Attack – Sql 

Injection 

21 21 1.0000 

SSH-Patator 245 5897 0.0415   Heartbleed 11 11 1.0000 

FTP-Patator 123 7938 0.0154   Infiltration 33 36 0.9166 

DoS slowloris 84 5796 0.0144   DoS slowloris 1430 5796 0.2467 

DoS Slowhttptest 75 5499 0.0136   DoS Slowhttptest 1309 5499 0.2380 

DoS GoldenEye 47 10293 0.0045   DoS GoldenEye 312 10293 0.0303 

PortScan 662 158930 0.0041   PortScan 1524 158930 0.0095 

DdoS 101 128027 0.0007   DdoS 388 128027 0.0030 

DoS Hulk 63 231073 0.0002   DoS Hulk 310 231073 0.0013 

 

The high number of FP can be reduced by further fine-tuning the MIDAS internal parameters. E.g., by 

doubling the number of buckets from 1024 to 2048, we obtained ROC-AUC=0.9933 and average 

Precision=0.9841. When using the two 99th and 99.999th percentiles to define a couple of threshold 

values, as reported in the table below, we observed a highly reduced FP (and thus FPR). The price to 

pay is a reduced average processing rate of 128k flows/sec and the doubling of the memory 

requirements. 
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Table 7: MIDAS performance on CIC-IDS2017 fine-tuning example 

99-th threshold = 1.63*105 99.999-th threshold = 2.12*107 

TP = 546945 

FP = 136972 
TN = 1606207 

FN = 10701 

TP = 513330 

FP = 3886 
TN = 1739293 

FN = 44316 

Accuracy = 0.9358 
Precision = 0.7997 
Recall [TPR] = 0.9808 

FPR = 0.0786 

F1-score = 0.8811 

Accuracy = 0.9791 
Precision = 0.9925 
Recall [TPR] = 0.9205 

FPR = 0.0022 

F1-score = 0.9552 

 

As a final remark, it should also be noted that the output of the MAD subcomponents still has to be 

processed by the following TCAM subcomponent whose task is further reducing the FP when trying to 

classify the specific type of threat associated with the anomalies. 

Autoencoder 

The anomaly detection capabilities of the Autoencoder variant for the network traffic case are illustrated 

below on the CIC-IDS2017 Bot test set for three different decision boundaries. It should be highlighted 

that these results are only relevant for the botnet attacks, which corresponds to one of the most complex 

ones in terms of detection. The decision boundaries were drawn by accepting various percentages of the 

normal data as false positives.  All results represent the highest overall precision across the three decision 

boundaries. 

 

Decision 

Boundary 
Autoencoder 

Precision 
FPs 

0.001% 0.75 3 

0.006% 0.54 13 

0.0011% 0.44 16 

 

 

 

Figure 23: Results of the Autoencoder anomaly detection algorithm on the CIC-IDS2017 Bot test set 

An interpretation of the above results is as follows: When accepting that 0.001% of normal traffic can 

be predicted as malicious, we get a decision boundary that contains that percentage of normal traffic on 

the wrong side of it. For that decision boundary, we get a precision of 0.75 from the Autoencoder, 

meaning 75% of the traffic labelled as malicious is indeed botnet traffic. We also present the underlying 

measurements of true positives and false positives for the same decision boundaries. While the 

Autoencoder has been able to detect some of the botnet occurrences, it cannot clearly separate between 

every instance of botnet and benign traffic.   

GANomaly 

Similarly, we have tested GANomaly on the same CIC-IDS2017 Bot test set for three different decision 

boundaries achieving significantly better results: 
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Decision 

Boundary 
Autoencoder 

Precision 
FPs 

0.001% 0.92 11 

0.006% 0.65 20 

0.0011% 0.58 28 

 

 

 

Figure 24: Results of the GANomaly anomaly detection algorithm on the CIC-IDS2017 Bot test set 

As shown in Figure 24, both numerically and visually, GANomaly’s performance surpasses that of the 

previous methods, being able to offer a precision-oriented solution for botnet detection purposes. It is 

apparent that GANomaly results in a more confident data distribution since the blue points, representing 

normal traffic, have an anomaly score that is on average closer to zero compared to their reconstruction 

error when passed through the Autoencoder. It can also be observed that the red points, representing 

malicious traffic, achieve better separation from the blue points with GANomaly, which is caused by a 

better modelling of the data distribution, making outliers stand out more. 

The anomaly detection capabilities of the GANomaly variant for the network traffic case are also 

illustrated in Figure 25 using the USTC-TFC2016 test set. It can be easily observed that a clear 

separability between the benign and botnet classes exists, as a result of the difference between the 

produced reconstruction between the two different types of Netflow logs. This indicates that the model 

has learned the underlying patterns of normal traffic and is capable of reconstructing it, contrary to 

malicious (botnet) logs for which the model has no knowledge of, and therefore cannot recreate. 

 

Figure 25: Results of the GANomaly anomaly detection algorithm on the USTC-TFC2016 test set 

Isolation Forest on the syslog case 

Similar to the network traffic case, the goal with regard to the system logs is to distinguish between 

benign and malicious behaviour. To this end, the separability between normal/benign and 

suspicious/botnet system logs is depicted in Figure 26 (for IsolationForest, highlighting the efficiency 



 

 
 

Document name: D5.1 Hybrid Threat Intelligence Framework - First Release Page:   48 of 65 

Reference: 1.0 Dissemination:  PU Version: 1.0 Status: Final 

 

of the aforementioned preprocessing and analytics operations). The figure is based on the AIT Log Data 

test set. 

 

Figure 26: Results of the Isolation Forest anomaly detection algorithm on the AIT Log Data test set 

 

4.3. Threat Classification and Alarm Management 

4.3.1. Implementation details  

For the purposes of the TCAM module, RandomForest classifiers were trained for both network traffic 

and system log analytics pipelines. RandomForest classifiers are trained using the scikit-learn Python 

framework [27]. 

Regarding the former case, a hyperparameter search is leveraged to determine the optimal values for the 

decision trees comprising the forest (161 estimators) and the minimum number of features considered 

by each tree when splitting a node (9 samples). A random subset with the size of the square root of the 

available features is used for each tree classifier, while the number of samples used to fit each decision 

tree is set as half of the available data to avoid overfitting. 

Similar to the previous case, a hyperparameter search was leveraged to determine the optimal values for 

the decision trees comprising the forest (17 estimators), the minimum number of features considered by 

each tree when splitting a node (443 samples) and the minimum number of samples required per leaf 

(12 samples) to increase regularisation. A random subset with the size of the square root of the available 

features was used for each tree classifier, while the number of samples used to fit each decision tree was 

set as half of the available data. 

4.3.1. Preliminary Evaluation 

The classification results using RandomForest on the USTC-TFC2016 test set along with the importance 

of each feature involved in the classification process, are depicted in Figure 27. It is evident that the 

algorithm is capable of distinguishing between the different attack and benign traffic classes with high 

confidence. 
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Figure 27: Classification accuracy and feature importance of RandomForest on USTC-TFC2016 test 

set for the netflow case 

In a similar fashion to the netflow case, a benchmark was designed for the syslog case based on the test 

set of the AIT Log data. Given that the dataset is highly imbalanced (i.e., not all classes are equally 

represented) the test set only contained 3 types of labels: Label_0 which corresponds to benign logs, 

Label_1 and Label_2 that refer to hydra-ssh and nikto attacks respectively.  

 

 

 

 

 

Figure 28: Classification accuracy and feature importance of RandomForest on AIT Log data test set 

for the syslog case 

It should be noted that -after the successful training and testing of the aforementioned prototypes- 

production-level versions of the aforementioned anomaly detection and threat classification models 

were developed using the Spark v3.2 distributed ML framework [31] using the same hyperparameters. 

4.4. Recommendation and Remediation 

4.4.1. Implementation details  

The Recommendation and Remediation tool presented in Section 2.3.4 has been developed as a set of 

Python 3.11 scripts. It has been designed in a modular fashion to ease the development of new features 

and the integration of new Enrichment Modules. Moreover, it has been designed to be called with an 

API and to be easily exported as a service. 

More details on the current implementation of its modules are described below. 

• Input Analyser. This module uses standard Python libraries to read, parse and store into the KB 

the TCAM outputs. 

• Recipe Filter. This module uses standard Python libraries to query the RR Recipe DB. Both the 

Applicability report and the Applicable Recipes List are presented to the user as files. 

Label Classification 

Accuracy 

Label_0 (benign traffic) 0.9998 

Label_1 (hydra_ssh) 0.9399 

Label_2 (nikto scan) 0.8943 

Overall test set 0.9933 
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• Knowledge Base. This database is implemented as a Python dictionary in the current version. 

Persistence is achieved by storing the dictionary as a JSON file. Even if it is unnecessary for 

this version of the prototype, the following versions of the KB will use more structured 

databases. We are investigating the use of JSON document databases (e.g., MongoDB). 

• RR Recipe Database. This database contains a set of abstract recipes, i.e., sequences of 

remediation actions, written in a high-level custom language. It is implemented as a Python 

dictionary in the current version. Persistence is achieved by storing the dictionary as a JSON 

file. More structured database technologies are under investigation (e.g., traditional SQL, 

noSQL, and JSON document databases), but they have been evaluated as superfluous in the 

current stage and for the near future. 

• Recipe Instruction Interpreter. This module works as an interpreter of the recipe descriptions. 

The interpreter is based on the Natural Language ToolKit (nltk) Python package [32], one of 

the most used frameworks to handle human language data. Furthermore, its functionalities are 

extended by means of Enrichment Modules. The RII Enrichment Modules currently available 

are described below. 

▪ The Landscape Analysis uses the igraph Python package [33], one of the most widely 

employed packages, for managing the graph that describes the network topology. 

▪ On the other hand, the Capability Management Module just uses standard Python 

libraries. 

• Output Generator. This module reads the KB and produces the RR tool outputs. It does not 

employ any external Python package. 

The Recommendation and Remediation tool is provided as a Docker container, based on the 

python:3.11-rc-bullseye official Docker image [20]. 

4.4.2. Preliminary Evaluation 

We have evaluated the RR tool on the botnet use case, the reference scenario for the WP5. For this 

purpose, we have designed 

• a target network and described it with the Landscape Description Language; 

• a sample Threat Intelligence Report; 

• a set of 7 recipes that have been stored in the RR Recipe DB. 

The preliminary evaluation of the RR tool indicates that it does not pose any performance constraint. 

Also, a preliminary analysis of the complexity of the algorithms only indicates a risk for the computation 

of the network paths, which is not considered a significant issue for networks with less than a billion 

nodes. 

Further performance evaluations are expected in the coming months with larger synthetic networks (to 

evaluate the scalability against the landscape complexity and size) and potentially more sophisticated 

recipes (which could be developed to address other project use cases). 

Finally, a more thorough validation is expected from the use case owners. They will be asked to 

• validate the appropriateness and effectiveness of the recipes proposed for all the use cases; 

• identify the missing reactions and reaction strategies that may be the starting point for defining 

new recipes; 

• the correctness of the deployment of the proposed recipes, both in terms of changes imposed to 

the target network and changes to the configurations of the security capabilities involved. 
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5. Conclusions 

This deliverable provided the initial detailed view on the architecture, low-level design and 

specifications of the subcomponents belonging to the Hybrid Threat Intelligence framework, 

constituting the core line of work in WP5. 

The information provided is the current, up-to-date architecture and design for each subcomponent and 

corresponding module(s). This design encompasses everything from the internal separation of logic 

concerns to the interactions between modules, as well as the structure of the top-level components of 

the PALANTIR platform. All of these specifications and designs create the path for each of them to be 

developed. The work of this deliverable will have an influence on future talks about integrations with 

other components. 

Aside from the design, this deliverable contains low-level, development-related details in the form of 

technical specifications (mapped from the general requirements introduced in D2.1), that can be used as 

a guideline to monitor the progress of the technical activities of WP5. Finally, this deliverable covers 

the implementation details for each subcomponent, showcasing the selection of technologies, open-

source tools and frameworks and illustrating their intended functionality with the help of preliminary 

evaluations. 

In our efforts to provide a richer representation of the threat landscape that closely resembles human 

decision making, we envision the analysis of multimodal data types as a core functionality of the final 

PALANTIR release. Following up on the advances made by WP5 partners (UPM, TID) in other Horizon 

2020 projects (i.e., 5GROWTH [34] and 5G-CLARITY [35]), there are plans to introduce additional 

data aggregation features to the Threat Intelligence component, namely the Semantic Data Aggregator 

(SDA). The SDA is a semantic, model-driven monitoring framework that enables data collection, data 

transformation, and data aggregation from different monitoring elements, and coordinates the flow of 

these data among a set of heterogenous data sources and data consumers. By using formal data models, 

defined by means of the YANG[36] modelling language, the SDA adapts data collected from the 

available sources into the formats suitable for consumers. In the scope of WP5, the SDA is envisioned 

as an element extending the capabilities of the DCP subcomponent within the Hybrid Threat Intelligence 

framework. In this regard, the definition of a YANG model for NetFlow-based monitoring data has 

started. By applying a formal model that is agnostic to the data source, i.e., the NetFlow collector, the 

SDA provides interoperability to current and prospective consumers present within PALANTIR 

framework, especially the MAD subcomponent of the Hybrid Threat Intelligence framework. 

Nevertheless, focus will not limit to NetFlow as more sources and consumers, such as IPFIX, syslog or 

network telemetry mechanisms, are in the radar. 

As the project enters its second phase, the next steps will mostly focus on integration activities with the 

rest of the PALANTIR components and on adapting new functionalities (e.g., SDA), while fulfilling 

any requirements that have not yet been met in the implementation phase. Such examples are: the 

aggregation of threat findings from complementary analytics-based threat detection modules, the 

finetuning and retraining of ML/DL models to address additional attack types relevant to the established 

Use Cases, the implementation of standardised alerts as part of the alarm management functionalities to 

enable live threat sharing, and the development of additional mitigation policies to make full use of the 

currently available or planned SCs. To this end, the existing code in the repositories is expected to be 

updated and improved upon in the months to come. 
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7. Annex 

7.1. Annex A: Interfaces of the Threat Intelligence subcomponents  

Table 8: DCP_DC_001 interface specification 

METHOD SPECIFICATION 

Interface ID DCP_DC_001 

Interface Point Collector 

Interface Name Binary Netflow Collection 

Description This interface is deployed on Collector in order to collect binary 

netflow data forwarded from infrastructure’s network devices 

Data Source Network devices 

Data Destination Collector 

Data Volume Forwarded netflows in binary format from network devices 

Implementation Mechanism The interface is deployed in Collector using the nfcapd tool 

Syntax N/A 

Pre-condition N/A 

Post-condition Collected netflows will be dumped in nfcapd files 

 

 

Table 9: KAFKA_001 interface specification 

METHOD SPECIFICATION 

Interface ID KAFKA_001 

Interface Point Kafka 

Interface Name Kafka topic for anonymized & pre-processed netflow data 

Description This interface exists as a Kafka topic, where anonymized & pre-

processed netflow records are ingested. Both anonymization and 

pre-processing functions have been applied to these records 

Data Source Data Preprocessing module (DP) 

Data Destination Kafka, Data Collection and Data Preprocessing subcomponent 

(DPC), Multimodal Anomaly Detection subcomponent (MAD), 

Threat Classification and Alarm Management (TCAM) 

Data Volume Netflow records in CSV format, separated by comma, as they are 

transformed after application of anonymization & pre-processing 

functions 

Implementation Mechanism The interface is implemented as a Kafka topic 

Syntax netflow-anonymized-preprocessed 

 

Record schema (CSV): 

ts, te, td, sa, da, sp, dp, pr, flg, fwd, stos, ipkt, ibyt, opkt, obyt, in, 

out, sas, das, smk, dmk, dtos, dir, nh, nhb, svln, dvln, ismc, odmc, 

idmc, osmc, mpls1, mpls2, mpls3, mpls4, mpls5, mpls6, mpls7, 
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mpls8, mpls9, mpls10, cl, sl, al, ra, eng, exid, tr, tpkt, tbyt, cp, 

prtcp, prudp, pricmp, prigmp, prother, flga, flgs, flgf, flgr, flgp, 

flgu 

  

Column names are explained in Table 24 in Annex 

Pre-condition Consumers must be registered in the specified Kafka topic 

Post-condition Consumers will fetch Kafka messages with the schema, described 

above, that will contain netflow records that are both anonymized 

& pre-processed 

 

Table 10: DCP_DC_002 interface specification 

METHOD SPECIFICATION 

Interface ID DCP_DC_002 

Interface Point Registry service. 

Interface Name Register Kafka Source Connector. 

Description This endpoint exists in the Registry service, in order to add a 

newly deployed Kafka Source Connector for netflow data. 

Data Source Kafka Source Connector for netflow data. 

Data Destination Registry Service. 

Data Volume The name and url of the new Kafka Source Connector must be 

provided. 

Implementation Mechanism The interface is implemented as a REST API endpoint. 

Syntax /register 

Body schema (JSON): 

{ 

name: string, 

url: string 

} 

The method can be requested under 1 condition: 

POST request with provided body 

Pre-condition  

Post-condition A JSON response with status code 200 and a success message 

will return if everything works fine. Otherwise, if any error 

occurred a JSON response with status code 400 and an error 

message will be returned. 

 

Table 11: DCP_DC_003 interface specification 

METHOD SPECIFICATION 

Interface ID DCP_DC_003 

Interface Point Registry service. 
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Interface Name Unregister Kafka Source Connector. 

Description This endpoint exists in the Registry service, in order to delete an 

existing Kafka Source Connector for netflow data. 

Data Source Kafka Source Connector for netflow data. 

Data Destination Registry Service. 

Data Volume The name of an existing Kafka Source Connector must be 

provided. 

Implementation Mechanism The interface is implemented as a REST API endpoint. 

Syntax /unregister 

Body schema (JSON): 

{ 

name: string 

} 

The method can be requested under 1 condition: 

POST request with provided body 

Pre-condition  

Post-condition A JSON response with status code 200 and a success message 

will return if everything works fine. Otherwise, if any error 

occurred a JSON response with status code 400 and an error 

message will be returned. 

 

Table 12: DCP_DC_004 interface specification 

METHOD SPECIFICATION 

Interface ID DCP_DC_004 

Interface Point Registry service. 

Interface Name Update a record of an existing Kafka Source Connector. 

Description This endpoint exists in the Registry service, in order to update an 

existing Kafka Source Connector for netflow data. 

Data Source Kafka Source Connector for netflow data. 

Data Destination Registry Service. 

Data Volume The name and the updated url of an existing Kafka Source 

Connector must be provided. 

Implementation Mechanism The interface is implemented as a REST API endpoint. 

Syntax /update 

Body schema (JSON): 

{ 

name: string, 

url: string 

} 

The method can be requested under 1 condition: 

POST request with provided body 
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Pre-condition  

Post-condition A JSON response with status code 200 and a success message 

will return if everything works fine. Otherwise, if any error 

occurred a JSON response with status code 400 and an error 

message will be returned. 

 

Table 13: DCP_DC_005 interface specification 

METHOD SPECIFICATION 

Interface ID DCP_DC_005 

Interface Point Registry service. 

Interface Name Get the next available Kafka Source Connector for netflow data. 

Description This endpoint exists in Registry service, in order to balance the 

load between all available connectors. It returns every time the 

next available connector, using round robin distribution. 

Data Source Registry Service. 

Data Destination Collector. 

Data Volume No params or body needs to be provided. 

Implementation Mechanism The interface is implemented as a REST API endpoint. 

Syntax /target 

The method can be requested under 1 condition: 

GET request 

Pre-condition At least one Kafka Source Connector for netflow data must be 

already registered. 

Post-condition A JSON response with status code 200, the name and the URL of 

a Kafka Source Connector for netflow data and a success message 

will return if everything works fine. Otherwise, if any error 

occurred a JSON response with status code 400 and an error 

message will be returned. 

 

Table 14: DCP_DC_006 interface specification 

METHOD SPECIFICATION 

Interface ID DCP_DC_006 

Interface Point Registry service. 

Interface Name Get all available Kafka Source Connectors for netflow data. 

Description This endpoint exists in the Registry service, in order to get all 

available Kafka Source Connectors for netflow data. 

Data Source Registry Service. 

Data Destination   

Data Volume No params or body needs to be provided. 

Implementation Mechanism The interface is implemented as a REST API endpoint. 

Syntax /services 
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The method can be requested under 1 condition: 

GET request 

Pre-condition  

Post-condition A JSON response with status code 200 and a JSON array with all 

available connectors will return if everything works fine. 

Otherwise, if any error occurred a JSON response with status 

code 400 and an error message will be returned. 

 

Table 15: DCP_DC_007 interface specification 

METHOD SPECIFICATION 

Interface ID DCP_DC_007 

Interface Point Kafka Source Connector. 

Interface Name Receive nfcapd file for conversion. 

Description This endpoint exists in all Kafka Source Connectors for netflow 

data. It is responsible for retrieving a nfcapd file and converting 

it to .csv format. 

Data Source Collector 

Data Destination Kafka Source Connector for netflow data. 

Data Volume The filename and the binary content of the file must be provided. 

Implementation Mechanism The interface is implemented as a REST API endpoint. 

Syntax /convert 

HTTP Request Parameters: 

Filename: string 

Body schema (JSON): 

{ 

data: string 

} 

The method can be requested under 1 condition: 

POST request with provided body 

Pre-condition  

Post-condition A JSON response with status code 200 and a success message 

will return if everything works fine. Otherwise, if any error 

occurred a JSON response with status code 400 and an error 

message will be returned. 

 

Table 16: DCP_DC_008 interface specification 

METHOD SPECIFICATION 

Interface ID DCP_DC_008 

Interface Point Kafka Source Connector. 

Interface Name Ping the connector. 
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Description This endpoint exists in a Kafka Source Connector for health 

check purposes. 

Data Source Registry 

Data Destination Kafka Source Connector. 

Data Volume No params or body need to be provided. 

Implementation Mechanism The interface is implemented as a REST API endpoint. 

Syntax /ping 

The method can be requested under 1 condition: 

GET request 

Pre-condition  

Post-condition A JSON response with status code 200 and a success message 

will return if everything works fine. Otherwise, if any error 

occurred a JSON response with status code 400 and an error 

message will be returned. 

 

Table 17: DCP_AS_001 interface specification 

METHOD SPECIFICATION 

Interface ID DCP_AS_001 

Interface Point Anonymization Service. 

Interface Name Anonymize an IP address. 

Description This endpoint exists in Anonymization Service, to anonymize 

given IP addresses. 

Data Source Data Preprocessing module (DP) 

Data Destination Anonymization Service. 

Data Volume The IP address to be anonymized. 

Implementation Mechanism The interface is implemented as a REST API endpoint. 

Syntax /anonymize 

Body schema (JSON): 

{ 

IpAddr: string 

} 

The method can be requested under 1 condition: 

POST request with provided body 

Pre-condition  

Post-condition A JSON response with status code 200, a success message, the 

original and the obfuscated IP addresses and the time needed for 

execution (in seconds) will return if everything works fine. 

Otherwise, if any error occurred a JSON response with status 

code 400 and an error message will be returned. 
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Table 18: DCP_AS_002 interface specification 

METHOD SPECIFICATION 

Interface ID DCP_AS_002 

Interface Point Anonymization Service. 

Interface Name Deanonymize an IP address. 

Description This endpoint exists in Anonymization Service, to deanonymize 

given obfuscated IP addresses. 

Data Source   

Data Destination Anonymization Service. 

Data Volume The IP address to be de-anonymized. 

Implementation Mechanism The interface is implemented as a REST API endpoint. 

Syntax /deanonymize 

Body schema (JSON): 

{ 

IpAddr: string 

} 

The method can be requested under 1 condition: 

POST request with provided body 

Pre-condition The given IP address must be the result of a previous 

anonymization function. Otherwise, the original IP cannot be 

found in Anonymization Service’s storage. 

Post-condition A JSON response with status code 200, a success message, the 

original and the obfuscated IP addresses and the time needed for 

execution (in seconds) will return if everything works fine. 

Otherwise, if any error occurred a JSON response with status 

code 400 and an error message will be returned. 

 

Table 19: KAFKA_002 interface specification 

METHOD SPECIFICATION 

Interface ID KAFKA_002 

Interface Point Kafka 

Interface Name Kafka topic for raw netflow data. 

Description This interface exists as a Kafka topic, where collected raw 

netflow records are ingested. 

Data Source Kafka Source Connectors for netflow data. 

Data Destination Kafka. 

Data Volume Netflow records in CSV format, separated by comma, as they are 

extracted using nfdump tool. 

Implementation Mechanism The interface is implemented as a Kafka topic. 

Syntax netflow-raw 
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Record schema (CSV): 

ts, te, td, sa, da, sp, dp, pr, flg, fwd, stos, ipkt, ibyt, opkt, obyt, in, 

out, sas, das, smk, dmk, dtos, dir, nh, nhb, svln, dvln, ismc, odmc, 

idmc, osmc, mpls1, mpls2, mpls3, mpls4, mpls5, mpls6, mpls7, 

mpls8, mpls9, mpls10, cl, sl, al, ra, eng, exid, tr 

  

Column names are explained in Table 24 in Annex 

Pre-condition Consumers must be registered in the specified Kafka topic. 

Post-condition Consumers will fetch Kafka messages with the schema, described 

above, that will contain raw netflow records. 

 

Table 20: KAFKA_003 interface specification 

METHOD SPECIFICATION 

Interface ID KAFKA_003 

Interface Point Kafka 

Interface Name Kafka topic for anonymized netflow data. 

Description This interface exists as a Kafka topic, where collected 

anonymized only netflow records are ingested. No pre-processing 

function has been applied to these records. 

Data Source Data Preprocessing module (DP). 

Data Destination Kafka. 

Data Volume Netflow records in CSV format, separated by comma, as they are 

transformed after anonymization. 

Implementation Mechanism The interface is implemented as a Kafka topic. 

Syntax netflow- anonymized 

 

Record schema (CSV): 

ts, te, td, sa, da, sp, dp, pr, flg, fwd, stos, ipkt, ibyt, opkt, obyt, in, 

out, sas, das, smk, dmk, dtos, dir, nh, nhb, svln, dvln, ismc, odmc, 

idmc, osmc, mpls1, mpls2, mpls3, mpls4, mpls5, mpls6, mpls7, 

mpls8, mpls9, mpls10, cl, sl, al, ra, eng, exid, tr 

  

Column names are explained in Table 24 in Annex 

Pre-condition Consumers must be registered in the specified Kafka topic. 

Post-condition Consumers will fetch Kafka messages with the schema, described 

above, that will contain anonymized only netflow records. 

 

Table 21: KAFKA_004 interface specification 

METHOD SPECIFICATION 

Interface ID KAFKA_004 

Interface Point Kafka. 
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Interface Name Kafka topic for pre-processed netflow data. 

Description This interface exists as a Kafka topic, where pre-processed only 

netflow records are ingested. No anonymization has been applied 

to the records of this topic. 

Data Source Data Preprocessing module (DP) 

Data Destination Kafka 

Data Volume Netflow records in CSV format, separated by comma, as they are 

transformed after application of pre-processing functions. 

Implementation Mechanism The interface is implemented as a Kafka topic. 

Syntax netflow- preprocessed 

 

Record schema (CSV): 

ts, te, td, sa, da, sp, dp, pr, flg, fwd, stos, ipkt, ibyt, opkt, obyt, in, 

out, sas, das, smk, dmk, dtos, dir, nh, nhb, svln, dvln, ismc, odmc, 

idmc, osmc, mpls1, mpls2, mpls3, mpls4, mpls5, mpls6, mpls7, 

mpls8, mpls9, mpls10, cl, sl, al, ra, eng, exid, tr, tpkt, tbyt, cp, 

prtcp, prudp, pricmp, prigmp, prother, flga, flgs, flgf, flgr, flgp, 

flgu 

  

Column names are explained in Table 24 in Annex 

Pre-condition Consumers must be registered in the specified Kafka topic. 

Post-condition Consumers will fetch Kafka messages with the schema, described 

above, that will contain pre-processed only netflow records. 

 

Table 22: KAFKA_005 interface specification 

METHOD SPECIFICATION 

Interface ID KAFKA_005 

Interface Point Kafka 

Interface Name Kafka topic for netflow-based threat findings. 

Description This interface exists as a Kafka topic, where the analyzed netflow 

assigned with an anomaly score and a threat label are send to 

other PALANTIR components for policy recommendation and 

visualization purposes. 

Data Source Threat Classification and Preprocessing (TCAM) 

Data Destination Kafka. 

Data Volume Netflow data in JSON format enriched with additional 

information derived from MAD and TCAM operations. 

Implementation Mechanism The interface is implemented as a Kafka topic. 

Syntax threat-findings-netflow 

 

Record schema (JSON): 

  { 
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    "Threat_Finding": { 

      "Time_Start": timestamp, 

      "Time_End": timestamp, 

      "Time_Duration": float, 

      "Source_Address": string, 

      "Destination_Address": string, 

      "Source_Port": integer, 

      "Destination_Port": integer, 

      "Protocol": string, 

      "Flag": string, 

      "Soure_tos": integer, 

      "Input_packets": integer, 

      "Input_bytes": integer 

    }, 

    "Threat_Label": string, 

    "Classification_Confidence": float, 

    "Outlier_Score": float 

  },  

 

Pre-condition Consumers must be registered in the specified Kafka topic. 

Post-condition Consumer components (e.g. RR, Portal) must comply with the 

above schema to properly parse the output of the analytics 

process. 

 

Table 23: KAFKA_006 interface specification 

METHOD SPECIFICATION 

Interface ID KAFKA_006 

Interface Point Kafka 

Interface Name Kafka topic for syslog-based threat findings. 

Description This interface exists as a Kafka topic, where the analyzed syslog 

assigned with an anomaly score and a threat label are send to 

other PALANTIR components for policy recommendation and 

visualization purposes. 

Data Source Threat Classification and Preprocessing (TCAM) 

Data Destination Kafka. 

Data Volume Syslog data in JSON format enriched with additional information 

derived from MAD and TCAM operations. 

Implementation Mechanism The interface is implemented as a Kafka topic. 

Syntax threat-findings-syslog 

 

Record schema (JSON): 
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  { 

    "Timestamp": timestamp, 

     "Hostname": string, 

    "PID": integer, 

    "Message": string, 

    "Threat_Label": string 

    "Classification_Confidence": float, 

    "Outlier_Score": float 

  } 

Pre-condition Consumers must be registered in the specified Kafka topic. 

Post-condition Consumer components (e.g. RR, Portal) must comply with the 

above schema to properly parse the output of the analytics 

process. 

 

7.2. Annex B: Data models 

Table 24: Netflow schema 

Column 

Abbreviation 

Description Column 

Abbreviation 

Description 

ts Start Time - first seen mpls1 MPLS label 1 

te End Time - last seen mpls2 MPLS label 2 

td Duration mpls3 MPLS label 3 

sa Source Address mpls4 MPLS label 4 

da Destination Address mpls5 MPLS label 5 

sp Source Port mpls6 MPLS label 6 

dp Destination Port mpls7 MPLS label 7 

pr Protocol mpls8 MPLS label 8 

flg TCP Flags mpls9 MPLS label 9 

fwd Forwarding Status mpls10 MPLS label 10 

stos Source Tos cl Client latency 

ipkt Input Packets sl Server latency 

ibyt Input Bytes al Application latency 

opkt Output Packets ra Router IP Address 

obyt Output Bytes eng Engine Type/ID 

in Input Interface num exid Exporter ID 

out Output Interface num tr Time the flow was received by the 

collector 

sas Source AS tpkpt Total flow packets for bidirectional 

flows. For unidirectional this value will 

be the same as input packets (ipkt). 
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das Destination AS tbyt Total flow bytes for bidirectional flows. 

For unidirectional this value will be the 

same as input bytes (ibyt). 

smk Source mask cp Flag if flow destination port is a port, 

used by common services. Values is 1 if 

a port is a common port, otherwise it is 0. 

Ports of common services: FTP(20,21), 

SSH(22), Telnet(23), SMTP(25), 

DNS(53), DHCP(67,68), TFTP(69), 

HTTP(80), POP3(110), NNTP(119), 

NTP(123), IMAP4(143), SNMP(161), 

LDAP(389), HTTPS(443), IMAPS(993), 

RADIUS(1812), AIM(5190) 

dmk Destination mask prtcp TCP Protocol Flag. Values is 1 if 

protocol is TCP, 0 otherwise. 

dtos Destination Tos prudp UDP Protocol Flag. Values is 1 if 

protocol is UDP, 0 otherwise. 

dir Direction: ingress, 

egress 

pricmp ICMP Protocol Flag. Values is 1 if 

protocol is ICMP, 0 otherwise. 

nh Next-hop IP Address prigmp IGMP Protocol Flag. Values is 1 if 

protocol is IGMP, 0 otherwise. 

nhb BGP Next-hop IP 

Address 

prother Other Protocol Flag. Values is 1 if 

protocol is not TCP, UDP, ICMP or 

IGMP, 0 otherwise. 

svln Src vlan label flga TCP Control Flag (A). Value is 1 if TCP 

Flag A is in flow's TCP flags. 

dvln Dst vlan label flgs TCP Control Flag (S). Value is 1 if TCP 

Flag S is in flow's TCP flags. 

ismc Input Src Mac Addr flgf TCP Control Flag (F). Value is 1 if TCP 

Flag F is in flow's TCP flags. 

odmc Output Dst Mac Addr flgr TCP Control Flag (R). Value is 1 if TCP 

Flag R is in flow's TCP flags. 

idmc Input Dst Mac Addr flgp TCP Control Flag (P). Value is 1 if TCP 

Flag P is in flow's TCP flags. 

osmc Output Src Mac Addr flgu TCP Control Flag (U). Value is 1 if TCP 

Flag U is in flow's TCP flags. 

 

Table 25: Syslog schema 

Column  Description 

timestamp Unix timestamp describing when the event occurred. 

hostname The name assigned to a device connected to a computer network. 

service 

pid 

The name of the service that generated the event. 

PID of the Program that generated the event (not always available). 

message Text description of the event. 
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